Introduction to distance sampling : estimating abundance of biological populations /
Saved in:
Imprint: | Oxford ; New York : Oxford University Press, 2001. |
---|---|
Description: | xv, 432 p. : ill., map ; 24 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4543579 |
Table of Contents:
- 1. Introductory concepts
- 1.1. Introduction
- 1.2. Distance sampling methods
- 1.2.1. Quadrat sampling
- 1.2.2. Strip transect sampling
- 1.2.3. Line transect sampling
- 1.2.4. Point counts
- 1.2.5. Point transect sampling
- 1.2.6. Trapping webs
- 1.2.7. Cue counting
- 1.2.8. Dung counts
- 1.2.9. Related techniques
- 1.3. The detection function
- 1.4. Range of applications
- 1.4.1. Objects of interest
- 1.4.2. Method of transect coverage
- 1.4.3. Clustered populations
- 1.5. Types of data
- 1.5.1. Ungrouped data
- 1.5.2. Grouped data
- 1.5.3. Data truncation
- 1.5.4. Units of measurement
- 1.5.5. Ancillary data
- 1.6. Known constants and parameters
- 1.6.1. Known constants
- 1.6.2. Parameters
- 1.7. Assumptions
- 1.8. Fundamental concept
- 1.9. Detection of objects
- 1.9.1. Cue production
- 1.9.2. Observer effectiveness
- 1.9.3. Environment
- 1.10. History of methods
- 1.10.1. Line transects
- 1.10.2. Point transects
- 1.11. Program Distance
- 2. Assumptions and modelling philosophy
- 2.1. Assumptions
- 2.1.1. Assumption 1: objects on the line or point are detected with certainty
- 2.1.2. Assumption 2: objects are detected at their initial location
- 2.1.3. Assumption 3: measurements are exact
- 2.1.4. Other assumptions
- 2.2. Fundamental models
- 2.2.1. Line transects
- 2.2.2. Point transects
- 2.2.3. Summary
- 2.3. Philosophy and strategy
- 2.3.1. Model robustness
- 2.3.2. Shape criterion
- 2.3.3. Efficiency
- 2.3.4. Model fit
- 2.3.5. Test power
- 2.4. Robust models
- 2.5. Some analysis guidelines
- 2.5.1. Exploratory phase
- 2.5.2. Model selection
- 2.5.3. Final analysis and inference
- 3. Statistical theory
- 3.1. General formula
- 3.1.1. Standard distance sampling
- 3.1.2. Line transect sampling
- 3.1.3. Point transect sampling
- 3.1.4. Distance sampling with multipliers
- 3.2. The key function formulation for distance data
- 3.3. Maximum likelihood methods
- 3.3.1. Ungrouped data
- 3.3.2. Grouped data
- 3.3.3. Special cases
- 3.3.4. The half-normal detection function
- 3.3.5. Constrained maximum likelihood estimation
- 3.4. Choice of model
- 3.4.1. Criteria for robust estimation
- 3.4.2. Akaike's Information Criterion
- 3.4.3. The likelihood ratio test
- 3.4.4. Goodness of fit
- 3.5. Estimation for clustered populations
- 3.5.1. Truncation
- 3.5.2. Stratification by cluster size
- 3.5.3. Weighted average of cluster sizes
- 3.5.4. Regression estimators
- 3.5.5. Use of covariates
- 3.5.6. Replacing clusters by individual objects
- 3.6. Density, variance and interval estimation
- 3.6.1. Basic formulae
- 3.6.2. Replicate lines or points
- 3.6.3. The jackknife
- 3.6.4. The bootstrap
- 3.6.5. Estimating change in density
- 3.6.6. A finite population correction factor
- 3.7. Stratification and covariates
- 3.7.1. Stratification
- 3.7.2. Covariates
- 3.8. Efficient simulation of distance data
- 3.8.1. The general approach
- 3.8.2. The simulated line transect data of Chapter 4
- 3.8.3. The simulated size-biased point transect data of Chapter 5
- 3.8.4. Discussion
- 3.9. Exercises
- 4. Line transects
- 4.1. Introduction
- 4.2. Example data
- 4.3. Truncation
- 4.3.1. Right-truncation
- 4.3.2. Left-truncation
- 4.4. Estimating the variance in sample size
- 4.5. Analysis of grouped or ungrouped data
- 4.6. Model selection
- 4.6.1. The models
- 4.6.2. Akaike's Information Criterion
- 4.6.3. Likelihood ratio tests
- 4.6.4. Goodness of fit
- 4.7. Estimation of density and measures of precision
- 4.7.1. The standard analysis
- 4.7.2. Ignoring information from replicate lines
- 4.7.3. Bootstrap variances and confidence intervals
- 4.7.4. Satterthwaite degrees of freedom for confidence intervals
- 4.8. Estimation when the objects are in clusters
- 4.8.1. Observed cluster size independent of distance
- 4.8.2. Observed cluster size dependent on distance
- 4.9. Assumptions
- 4.9.1. Independence
- 4.9.2. Detection on the line
- 4.9.3. Movement prior to detection
- 4.9.4. Inaccuracy in distance measurements
- 4.10. Summary
- 4.11. Exercises
- 5. Point transects
- 5.1. Introduction
- 5.2. Example data
- 5.3. Truncation
- 5.3.1. Right-truncation
- 5.3.2. Left-truncation
- 5.4. Estimating the variance in sample size
- 5.5. Analysis of grouped or ungrouped data
- 5.6. Model selection
- 5.6.1. The models
- 5.6.2. Akaike's Information Criterion
- 5.6.3. Likelihood ratio tests
- 5.6.4. Goodness of fit
- 5.7. Estimation of density and measures of precision
- 5.7.1. The standard analysis
- 5.7.2. Bootstrap variances and confidence intervals
- 5.8. Estimation when the objects are in clusters
- 5.8.1. Standard method with additional truncation
- 5.8.2. Replacement of clusters by individuals
- 5.8.3. Stratification
- 5.8.4. Regression estimator
- 5.9. Assumptions
- 5.10. Summary
- 5.11. Exercises
- 6. Related methods
- 6.1. Introduction
- 6.2. Dung and nest surveys
- 6.2.1. Background
- 6.2.2. Field methods
- 6.2.3. Analysis
- 6.2.4. Assumptions
- 6.3. Line transect surveys for objects that are not continuously available for detection
- 6.3.1. Periods of detectability interspersed with periods of unavailability
- 6.3.2. Objects that give discrete cues
- 6.4. Cue counting
- 6.4.1. Introduction
- 6.4.2. Density estimation
- 6.4.3. Assumptions
- 6.4.4. Example
- 6.5. Distance sampling surveys for fast-moving objects
- 6.5.1. Line transect surveys
- 6.5.2. Point transect surveys
- 6.6. Other models
- 6.6.1. Binomial models
- 6.6.2. Estimators based on the empirical cdf
- 6.6.3. Estimators based on shape restrictions
- 6.6.4. Kernel estimators
- 6.6.5. Hazard-rate models
- 6.7. Distance sampling surveys when the observed area is incompletely covered
- 6.8. Trapping webs
- 6.8.1. Survey design and field methods
- 6.8.2. Assumptions
- 6.8.3. Estimation of density
- 6.8.4. Monte Carlo simulations
- 6.8.5. A simple example
- 6.8.6. Darkling beetle surveys
- 6.9. Point-to-object and nearest neighbour methods
- 6.10. Exercises
- 7. Study design and field methods
- 7.1. Introduction
- 7.2. Survey design
- 7.2.1. Transect layout
- 7.2.2. Sample size
- 7.3. Survey protocol and searching behaviour
- 7.3.1. Line transects
- 7.3.2. Point transects
- 7.4. Data measurement and recording
- 7.4.1. Distance measurement
- 7.4.2. Angle measurement
- 7.4.3. Distance measurement error
- 7.4.4. Cluster size
- 7.4.5. Line length measurement
- 7.4.6. Ancillary data
- 7.4.7. Data recording
- 7.5. Training observers
- 7.6. Aerial surveys
- 7.6.1. Aircraft and survey characteristics
- 7.6.2. Search and survey protocol
- 7.6.3. Distance measurement
- 7.7. Marine shipboard surveys
- 7.7.1. Vessel and survey characteristics
- 7.7.2. Search and survey protocol
- 7.7.3. Distance measurement
- 7.8. Land-based surveys
- 7.8.1. Surveys of small objects
- 7.8.2. Stratification by habitat
- 7.8.3. Permanent transects and repeat transects
- 7.8.4. Cut transects
- 7.8.5. Roads, tracks and paths as transects
- 7.8.6. Spotlight and thermal imager surveys
- 7.8.7. Objects detected away from the line
- 7.8.8. Bird surveys
- 7.8.9. Surveys in riparian habitats
- 7.9. Special circumstances
- 7.9.1. Multi-species surveys
- 7.9.2. Surveys of animals that occur at high densities
- 7.9.3. One-sided transects
- 7.9.4. Uneven terrain and contour transects
- 7.9.5. Uncertain detection on the trackline
- 7.10. Field comparisons between line transects, point transects and mapping censuses
- 7.10.1. Breeding birds in Californian coastal scrub
- 7.10.2. Breeding birds in Sierran subalpine forest
- 7.10.3. Bobolink surveys in New York state
- 7.10.4. Breeding birds in Californian oak-pine woodlands
- 7.10.5. Breeding birds along the Colorado River
- 7.10.6. Birds of Miller Sands Island, Oregon
- 7.10.7. Concluding remarks
- 7.11. Exercises
- 8. Illustrative examples
- 8.1. Introduction
- 8.2. Lake Huron brick data
- 8.3. Wooden stake data
- 8.4. Studies of nest density
- 8.4.1. Spatial distribution of duck nests
- 8.4.2. Estimation of density
- 8.4.3. Nest detection in differing habitat types
- 8.4.4. Models for the detection function g(x)
- 8.4.5. Estimating trend in nest numbers
- 8.5. Fin whale abundance in the North Atlantic
- 8.6. House wren densities in South Platte River bottomland
- 8.7. Songbird point transect surveys in Arapaho NWR
- 8.8. Assessing the effects of habitat on density
- Bibliography
- Common and scientific names of plants and animals
- Glossary of notation and abbreviations
- Index