Principles of pulse electron paramagnetic resonance /

Saved in:
Bibliographic Details
Author / Creator:Schweiger, A. (Arthur)
Imprint:Oxford, UK ; New York : Oxford University Press, 2001.
Description:xxvi, 578 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4561299
Hidden Bibliographic Details
Other authors / contributors:Jeschke, Gunnar.
ISBN:0198506341 (acid-free paper)
Notes:Includes bibliographical references (p. [542]-571) and index.
Table of Contents:
  • Preface
  • Acknowledgements
  • Symbols
  • Abbreviations
  • 1. Introduction
  • 1.1. Scope of pulse EPR
  • 1.2. A short history of pulse EPR
  • 1.3. Examples of applications
  • 2. Classical Description
  • 2.1. The resonance phenomenon
  • 2.2. The vector picture for pulse EPR experiments
  • 2.3. Relaxation and the Bloch equations
  • 3. Spin Hamiltonian
  • 3.1. Static spin Hamiltonian
  • 3.2. Oscillatory Hamiltonian
  • 3.3. Inhomogeneity in spin systems
  • 3.4. Eigenvalues and eigenvectors of spin Hamiltonians
  • 3.5. Model system for pulse EPR and ENDOR experiments
  • 4. Density Operators and Their Evolution
  • 4.1. Quantum mechanical description of the state of a spin system
  • 4.2. Quantum mechanical description of the time evolution of spin systems
  • 4.3. Initial state of the spin system
  • 5. Spectral Analysis
  • 5.1. The signal in time-domain spectroscopy
  • 5.2. Methods for signal analysis
  • 6. Manipulation of Electron and Nuclear Spins
  • 6.1. Manipulating spin states and Hamiltonians
  • 6.2. Tools
  • 6.3. Building blocks for the generation, transfer and detection of polarization and coherence
  • 6.4. Polarization transfer experiments
  • 6.5. Electron coherence transfer experiments
  • 6.6. Nuclear coherence transfer experiments
  • 7. Two-Level Dynamics
  • 7.1. Free induction decays
  • 7.2. Electron spin echoes
  • 7.3. Transient signals under microwave irradiation
  • 7.4. Physics of transient signal detection
  • 8. Relaxation and Related Phenomena
  • 8.1. Relaxation processes
  • 8.2. Basics of relaxation studies
  • 8.3. Measurement of longitudinal relaxation times
  • 8.4. Measurement of transverse relaxation times
  • 8.5. Measurement of rotating-frame relaxation times
  • 8.6. Nuclear spin relaxation
  • 9. Fourier Transform EPR
  • 9.1. Basics of Fourier transform EPR
  • 9.2. Transient FT EPR
  • 9.3. Two-dimensional FT EPR
  • 10. Nuclear Modulation Effect I: Basic Experiments
  • 10.1. Two-pulse ESEEM and general ESEEM theory
  • 10.2. Three-pulse ESEEM
  • 10.3. Hyscore
  • 11. Nuclear Modulation Effect II: Advanced Methods
  • 11.1. Deadtime and blind-spot free ESEEM methods
  • 11.2. ESEEM experiments with improved sensitivity
  • 11.3. Soft ESEEM
  • 11.4. Nuclear coherence-transfer experiments in one dimension
  • 11.5. Nuclear coherence-transfer experiments in two dimensions
  • 11.6. Hole-burning experiments
  • 11.7. Extended-time excitation experiments
  • 11.8. Special two-dimensional experiments
  • 12. Pulse Endor
  • 12.1. Basic principles
  • 12.2. ENDOR experiments based on polarization transfers
  • 12.3. Coherence-transfer ENDOR
  • 12.4. Time-domain ENDOR
  • 12.5. Hyperfine-correlated ENDOR spectroscopy
  • 13. Pulse Eldor and Related Experiments
  • 13.1. Two-frequency versus field-step ELDOR
  • 13.2. Polarization-transfer ELDOR
  • 13.3. Measurement of electron-electron couplings
  • 14. Transient Nutation Techniques
  • 14.1. Parameter extraction from nutation frequencies
  • 14.2. Experimental techniques
  • 15. Field-Swept EPR Experiments in One and Two Dimensions
  • 15.1. One-dimensional experiments
  • 15.2. Two-dimensional experiments
  • 16. Other Techniques
  • 16.1. EPR imaging and other spatially resolved techniques
  • 16.2. The linear electric field effect
  • 16.3. Multiple photon resonance in pulse EPR
  • 16.4. Self-induced transparency
  • 16.5. Dark resonance and electromagnetically induced transparency
  • 16.6. EPR with stochastic excitation
  • 16.7. Alternative detection schemes
  • 17. Multi-Frequency EPR
  • 17.1. Choice of the optimum EPR frequency
  • 17.2. High-frequency EPR
  • 18. Application Aspects
  • 18.1. EPR parameters and aspects of structure and dynamics
  • 18.2. Experimental strategies for obtaining EPR parameters
  • Appendix A. Sign Conventions
  • Appendix B. Mathematics
  • Appendix C. Experimental Aspects
  • References
  • Index