Many-body problems and quantum field theory : an introduction /

Saved in:
Bibliographic Details
Author / Creator:Martin, Philippe A.
Uniform title:Problèmes à N-corps et champs quantiques. English
Imprint:Berlin ; New York : Springer, c2002.
Description:xiii, 441 p. : ill. ; 24 cm.
Language:English
Series:Texts and monographs in physics, 0172-5998
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4592308
Hidden Bibliographic Details
Other authors / contributors:Rothen, François, 1936-
ISBN:3540411534 (acid-free paper)
Notes:Includes bibliographical references (p. [431]-436) and index.
Table of Contents:
  • 1. Classical Fields and Their Associated Particles
  • 1.1. Introduction
  • 1.2. The Quantum Harmonic Oscillator
  • 1.2.1. Review of Properties
  • 1.2.2. Coherent States
  • 1.2.3. The Forced Oscillator
  • 1.2.4. Normal Order
  • 1.3. The Electromagnetic Field and the Photon
  • 1.3.1. Maxwell's Equations
  • 1.3.2. Gauge Transformations
  • 1.3.3. Decomposition of the Field into Longitudinal and Transverse Components
  • 1.3.4. Hamiltonian of the Interaction of Radiation with Non-Relativistic Matter
  • 1.3.5. Fourier Analysis of the Classical Free Field
  • 1.3.6. Photons and Electromagnetic Waves
  • 1.4. The Elastic Field and the Phonon
  • 1.4.1. Elastic Waves and Elastic Energy
  • 1.4.2. Elastic Waves and Energy of an Isotropic Solid
  • 1.4.3. Fourier Analysis of Elastic Waves
  • 1.4.4. An Ensemble of Phonons and Classical Elastic Waves
  • 1.4.5. The Classical Linear Chain
  • 1.4.6. The Linear Quantum Chain
  • Exercises
  • 2. Fermions and Bosons
  • 2.1. The Principle of Symmetrization
  • 2.1.1. Identical Particles
  • 2.1.2. One-Particle States
  • 2.1.3. Periodic Boundary Conditions and the Thermodynamic Limit
  • 2.1.4. n-Particle States
  • 2.1.5. Symmetrization
  • 2.1.6. Symmetry of Composite Particles
  • 2.1.7. Occupation Number Representation
  • 2.2. Degenerate Gases
  • 2.2.1. The Ground State of n Bosons
  • 2.2.2. The Ground State of n Fermions
  • 2.2.3. Stability of Matter
  • 2.2.4. Nucleo-Electronic Plasma at High Density
  • 2.2.5. Fermions and Gravitation
  • Exercises
  • 3. Systems with Variable Particle Number
  • 3.1. Introduction
  • 3.2. Formalism of the Second Quantization
  • 3.2.1. Fock Space
  • 3.2.2. Creation and Annihilation Operators
  • 3.2.3. States of Fock Space
  • 3.2.4. Normal Order
  • 3.2.5. One-Body Operators
  • 3.2.6. Free Evolution and Symmetries
  • 3.2.7. Two-Body Operators
  • 3.2.8. Reduced Density Matrices and Correlations
  • 3.2.9. Correlations in Free Fermi and Bose Gases
  • 3.3. Quantum Physics and the Concept of a Perfect Gas
  • Exercises
  • 4. Electron Gas
  • 4.1. The Hartree-Fock Method
  • 4.1.1. The Variational Principle
  • 4.1.2. The Hartree-Fock Equations
  • 4.2. Electron Gas in the Hartree-Fock Approximation
  • 4.2.1. Electron Gas and Its Hamiltonian
  • 4.2.2. The Hartree-Fock Energy
  • 4.3. The Dielectric Function
  • 4.3.1. Screening and the Plasmon
  • 4.3.2. Response to an External Charge
  • 4.3.3. Evolution of a Charge Fluctuation
  • 4.3.4. The RPA Dielectric Function
  • Exercises
  • 5. Fermion Pairing and Superconductivity
  • 5.1. Does There Exist an Analogue of the Bose Condensation for Fermions?
  • 5.2. The Phenomenology of Superconductivity
  • 5.2.1. Experimental Facts
  • 5.2.2. The Phenomenological Approach
  • 5.2.3. Macroscopic Quantum Fluids
  • 5.2.4. Existence of the Energy Gap
  • 5.3. BCS Theory
  • 5.3.1. The Effective Interaction Between Electrons
  • 5.3.2. Application of the Variational Method to Superconductivity
  • 5.3.3. Sign Ambiguity
  • 5.3.4. Variational Class of BCS States
  • 5.3.5. How to Calculate with a BCS State
  • 5.3.6. Search for a Minimum-Energy State
  • 5.3.7. The Energy Gap
  • 5.3.8. Spatial Extension of a Cooper Pair
  • 5.4. Particle Number and Phase in Superconductivity
  • 5.4.1. Is it Necessary to Fix the Particle Number or the Phase?
  • 5.4.2. Analogy with Statistical Physics
  • 5.5. High-Tc Superconductivity
  • Exercises
  • 6. Nucleon Pairing and the Structure of the Nucleus
  • 6.1. Introduction
  • 6.2. A Broad Outline of the Nuclear Structure
  • 6.2.1. Nuclear Forces
  • 6.2.2. The Liquid Drop Model
  • 6.2.3. Pairing Energy
  • 6.2.4. Shell Energy
  • 6.3. The Shell Model
  • 6.3.1. The Average Potential of the Shell Model
  • 6.3.2. Magic Numbers
  • 6.4. Pairing of the Nucleons
  • 6.4.1. Necessity of the Model
  • 6.4.2. The Interaction Responsible for the Pairing
  • 6.4.3. The Variational Method and the State of Paired Nucleons
  • 6.4.4. Determination of the Ground State of a Paired Nucleus
  • 6.4.5. Ground and Excited States of a Spherical Paired Nucleus
  • 6.4.6. The Spectra of Paired Nuclei
  • 6.4.7. Total Angular Momentum of Spherical Even-Even Nuclei
  • 6.5. Relation Between Pairing and Superfluidity
  • 6.5.1. How Can a Nucleus Be a Superfluid?
  • 6.5.2. An Excited Nucleus in a Rotational State
  • 6.5.3. Moment of Inertia of a Deformed Nucleus
  • Exercises
  • 7. The Superfluidity of Liquid Helium
  • 7.1. Experimental Facts
  • 7.1.1. Phase Diagram of 42He
  • 7.1.2. Properties of the Superfluid Phase of He II
  • 7.2. Quantum Liquid and the Two-Fluid Model
  • 7.2.1. The Superfluid Phase and Quantum Liquid
  • 7.2.2. Dissipation in a Superfluid
  • 7.2.3. Second Sound
  • 7.3. The Energy Spectrum of He II
  • 7.3.1. Excitations of He II
  • 7.3.2. Non-Viscous Flow Through a Capillary
  • 7.4. Imperfect Bose Gas
  • 7.4.1. Bogolioubov's Approximation and Transformation
  • 7.4.2. Bose Gas or Liquid?
  • 7.5. Superfluidity of the Light Isotope 3He
  • 7.5.1. A Fermi Liquid
  • 7.5.2. Superfluidity of 3He
  • Exercises
  • 8. Quantum Fields
  • 8.1. Introduction
  • 8.2. The Quantum-Electromagnetic Field
  • 8.2.1. The Free Field
  • 8.2.2. Canonical Variables
  • 8.2.3. Invariant Commutation Function and Microcausality
  • 8.2.4. Emission of Photons by a Classical Source
  • 8.2.5. Coherent States of Photons
  • 8.2.6. Emission and Absorption of Photons by an Atom
  • 8.2.7. Spontaneous Emission
  • 8.2.8. Equilibrium of Photons and Matter
  • 8.2.9. Photon Statistics
  • 8.3. Massive Scalar Field
  • 8.3.1. Neutral Scalar Field
  • 8.3.2. The Yukawa Potential
  • 8.3.3. Charged Scalar Field
  • 8.3.4. Spin and Statistics
  • 8.3.5. The Lagrangian Formalism
  • 8.3.6. The Gauge Invariance Principle and Field Interactions
  • 8.3.7. Mass Generation
  • 8.4. Electrons and Phonons
  • 8.4.1. Non-Relativistic Fermi Field
  • 8.4.2. The Quantum-Elastic Field
  • 8.4.3. Electron-Phonon Interactions
  • Exercises
  • 9. Perturbative Methods in Field Theory
  • 9.1. Introduction
  • 9.2. The Green Functions
  • 9.2.1. Definition
  • 9.2.2. The Free-Particle Green Function
  • 9.2.3. Particle in an External Field
  • 9.2.4. Simplified Example: The Cooper Pair
  • 9.3. Perturbative Expansion of the Scattering Operator
  • 9.3.1. Time-Dependent Perturbation Theory
  • 9.3.2. The Scattering Operator
  • 9.3.3. Fermions and Bosons in Interaction
  • 9.3.4. The Wick Theorem for Chronological Products
  • 9.3.5. Chronological Contractions and Propagators
  • 9.3.6. Feynman Diagrams
  • 9.4. Applications
  • 9.4.1. Physical Interpretation of the Diagrams
  • 9.4.2. Electromagnetic Interactions: Compton Scattering
  • 9.4.3. Quantum Electrodynamics: Radiative Corrections
  • 9.4.4. Electron-Phonon Interactions
  • 9.4.5. Diagram Summation
  • Exercises
  • 10. Perturbative Methods in Many-Body Problems
  • 10.1. General Properties
  • 10.1.1. The One-Body Green Function
  • 10.1.2. Perturbative Calculation of the Green Function
  • 10.1.3. Particle in an External Field and the Connected-Graph Theorem
  • 10.1.4. Particles in Interaction
  • 10.2. Approximation Schemes for the Electron Gas
  • 10.2.1. Hartree-Fock Approximation
  • 10.2.2. RPA Approximation
  • Exercises
  • Bibliography
  • Index