Dynamical invariants, adiabatic approximation, and the geometric phase /

Saved in:
Bibliographic Details
Author / Creator:Mostafazadeh, A. (Ali)
Imprint:Huntington, N.Y. : Nova Science Publishers, c2001.
Description:xv, 260 p. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4594820
Hidden Bibliographic Details
Varying Form of Title:Dynamical invariants
ISBN:1590330137
Notes:Includes bibliographical references (p. 201-253) and index.
committed to retain 20170930 20421213 HathiTrust
Table of Contents:
  • Preface
  • Acknowledgments
  • Conventions and Notation
  • 1. Quantum Mechanics of Nonconservative Systems
  • 1.1. Basic Kinematic Structure
  • 1.2. Basic Dynamical Structure I: The Schrodinger Picture
  • 1.3. Basic Dynamical Structure II: The Heisenberg Picture
  • 1.4. Basic Dynamical Structure III: Dynamics in the State Space
  • 1.5. Schrodinger Equation for Periodic Hamiltonians
  • 1.6. Comments and Bibliographical Notes
  • 2. Algebraic Properties of Quantum Mechanics
  • 2.1. Symmetry in Quantum Mechanics
  • 2.2. Quantum Canonical Transformations
  • 2.3. Kinematic and Dynamical Groups and Algebras
  • 2.4. Comments and Bibliographical Notes
  • 3. Dynamical Invariants
  • 3.1. Dynamical Invariants and the Solution of the Schrodinger Equation
  • 3.2. Symmetries of Invariants and Uniqueness of the Evolution Operator
  • 3.3. Canonical Transformations of Dynamical Invariants
  • 3.4. Dynamical Invariants for Systems Possessing a Dynamical Group
  • 3.5. Comments and Bibliographical Notes
  • 4. Quantum Adiabatic Approximation
  • 4.1. Dynamical Invariants and Adiabatic Approximation
  • 4.2. Adiabatic Dynamical Invariants
  • 4.3. Adiabatic Series Expansion
  • 4.4. Adiabatic Product Expansion
  • 4.5. Comments and Bibliographical Notes
  • 5. Cyclic and Noncyclic Geometric Phases
  • 5.1. Adiabatic Evolution for a System with a Parametric Hamiltonian
  • 5.2. Coordinate Transformations and Berry's Connection One-Form
  • 5.3. Adiabatic Geometric Phase
  • 5.4. Adiabatic Geometric Phase and Transition Amplitudes
  • 5.5. Berry's Phase and Its non-Abelian Generalization
  • 5.6. Nonadiabatic Geometric Phase
  • 5.7. Cyclic Geometric Phase
  • 5.8. Geometric Phase for Systems Possessing a Dynamical Group
  • 5.9. Comments and Bibliographical Notes
  • 6. Spin System
  • 6.1. Hilbert Space for the Spin System
  • 6.2. Eigenvalue Problem for the Spin Hamiltonian
  • 6.3. Eigenvalue Problem for Dynamical Invariants
  • 6.4. Solution of the Schrodinger Equation for the Spin System Using Dynamical Invariants
  • 6.5. Adiabatic Approximation for the Spin System
  • 6.6. Adiabatic Series and Product Expansions for the Spin System
  • 6.7. Spin in a Precessing Magnetic Field
  • 6.8. Abelian Geometric Phase for the Spin System
  • 6.9. Non-Abelian Geometric Phase for the Spin System
  • 6.10. Comments and Bibliographical Notes
  • 7. Generalized Harmonic and Singular Oscillators
  • 7.1. Hilbert Space of the Generalized Harmonic Oscillator
  • 7.2. Eigenvalue Problem for the Generalized Harmonic Oscillator Hamiltonian
  • 7.3. Solution of the Schrodinger Equation Using Dynamical Invariants
  • 7.4. Solution of the Schrodinger Equation Using Canonical Transformations
  • 7.5. Adiabatic Approximation for Generalized Harmonic Oscillator
  • 7.6. Geometric Phase for Generalized Harmonic Oscillator
  • 7.7. Linear Dynamical Invariants for Generalized Harmonic Oscillator
  • 7.8. Generalized Singular Oscillator
  • 7.9. Comments and Bibliographical Notes
  • 8. Particle Confined between Moving Boundaries
  • 8.1. Hilbert Space of a Particle Confined between Moving Boundaries
  • 8.2. Transforming to Fixed Boundaries
  • 8.3. Some Exactly Solvable Cases
  • 8.4. Eigenvalue Problem for the Hamiltonian of a Free Particle Confined between Moving Boundaries
  • 8.5. Adiabatic Evolution of a Free Particle Confined between Moving Boundaries
  • 8.6. Adiabatic Geometric Phase due to Moving Boundaries
  • 8.7. Comments and Bibliographical Notes
  • Appendices
  • A. Manifolds and Differential Forms
  • A.1. Basic Properties of Manifolds
  • A.2. Global Properties of Manifolds
  • A.3. Tangent Vectors and Differential Forms
  • A.4. Wedge Product and Exterior Derivative
  • A.5. Integration on Manifolds
  • B. Lie Groups and Lie Algebras
  • B.1. Basic Properties of Lie Groups and Lie Algebras
  • B.2. Lie Groups and Symmetries
  • Bibliography
  • Index