Robust computational techniques for boundary layers /

Saved in:
Bibliographic Details
Imprint:Boca Raton : Chapman & Hall/CRC, c2000.
Description:xv, 254 p. : ill. ; 25 cm.
Language:English
Series:Applied mathematics ; 13
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4616427
Hidden Bibliographic Details
Other authors / contributors:Farrell, P. A.
ISBN:1584881925 (alk. paper)
Notes:Includes bibliographical references (p. [249]-252) and index.
Table of Contents:
  • 1. Introduction to numerical methods for problems with boundary layers
  • 1.1. The location and width of a boundary layer
  • 1.2. Norms for boundary layer functions
  • 1.3. Numerical methods
  • 1.4. Robust layer-resolving methods
  • 1.5. Some notation
  • 2. Numerical methods on uniform meshes
  • 2.1. Convection-diffusion problems in one dimension
  • 2.2. Centred finite difference method
  • 2.3. Monotone matrices and discrete comparison principles
  • 2.4. Upwind finite difference methods
  • 2.5. Fitted operator methods
  • 2.6. Neumann boundary conditions
  • 2.7. Error estimates in alternative norms
  • 3. Layer resolving methods for convection diffusion problems in one dimension
  • 3.1. Bakhvalov fitted meshes
  • 3.2. Piecewise-uniform fitted meshes
  • 3.3. Theoretical results
  • 3.4. Global accuracy on piecewise-uniform meshes
  • 3.5. Approximation of derivatives
  • 3.6. Alternative transition parameters
  • 4. The limitations of non-monotone numerical methods
  • 4.1. Non-physical behaviour of numerical solutions
  • 4.2. A non-monotone method
  • 4.3. Accuracy and order of convergence
  • 4.4. Tuning non-monotone methods
  • 4.5. Neumann boundary conditions
  • 4.6. Approximation of scaled derivatives
  • 4.7. Further considerations
  • 5. Convection-diffusion problems in a moving medium
  • 5.1. Motivation
  • 5.2. Convection-diffusion problems
  • 5.3. Location of regular and corner boundary layers
  • 5.4. Asymptotic nature of boundary layers
  • 5.5. Monotone parameter-uniform methods
  • 5.6. Computed errors and computed orders of convergence
  • 5.7. Numerical results
  • 5.8. Neumann boundary conditions
  • 5.9. Corner boundary layers
  • 5.10. Computational work
  • 6. Convection-diffusion problems with frictionless walls
  • 6.1. The origin of parabolic boundary layers
  • 6.2. Asymptotic nature
  • 6.3. Inadequacy of uniform meshes
  • 6.4. Fitted meshes for parabolic boundary layers
  • 6.5. Simple parameter-uniform analytic approximations
  • 7. Convection-diffusion problems with no slip boundary conditions
  • 7.1. No-slip boundary conditions
  • 7.2. Width of degenerate parabolic boundary layers
  • 7.3. Monotone fitted mesh method
  • 7.4. Numerical results
  • 7.5. Slip versus no-slip
  • 8. Experimental estimation of errors
  • 8.1. Theoretical error estimates
  • 8.2. Quick algorithms
  • 8.3. General algorithm
  • 8.4. Validation
  • 8.5. Practical uses of [epsilon]-uniform error parameters
  • 8.6. Global error parameters
  • 9. Non-monotone methods in two dimensions
  • 9.1. Non-monotone methods
  • 9.2. Tuned non-monotone method
  • 9.3. Difficulties in tuning non-monotone methods
  • 9.4. Weaknesses of non-monotone [epsilon]-uniform methods
  • 10. Linear and nonlinear reaction-diffusion problems
  • 10.1. Linear reaction diffusion problems
  • 10.2. Semilinear reaction-diffusion problems
  • 10.3. Nonlinear solvers
  • 10.4. Numerical methods on uniform meshes
  • 10.5. Numerical methods on piecewise-uniform meshes
  • 10.6. An alternative stopping criterion
  • 11. Prandtl flow past a flat plate - Blasius' method
  • 11.1. Prandtl boundary layer equations
  • 11.2. Blasius' solution
  • 11.3. Singularly perturbed nature of Blasius' problem
  • 11.4. Robust layer-resolving method for Blasius' problem
  • 11.5. Numerical solution of Blasius' problem
  • 11.6. Computed error estimates for Blasius' problem
  • 11.7. Computed global error estimates for Blasius' solution
  • 12. Prandtl flow past a flat plate - direct method
  • 12.1. Prandtl problem in a finite domain
  • 12.2. Nonlinear finite difference method
  • 12.3. Solution of the nonlinear finite difference method
  • 12.4. Error analysis based on the finest mesh solution
  • 12.5. Error analysis based on the Blasius solution
  • 12.6. A benchmark solution for laminar flow
  • References
  • Index