Introduction to time series and forecasting /

Saved in:
Bibliographic Details
Author / Creator:Brockwell, Peter J.
Edition:2nd ed.
Imprint:New York : Springer, c2002.
Description:xiv, 434 p. : ill. ; 25 cm. + 1 computer optical disk (4 3/4 in.).
Language:English
Series:Springer texts in statistics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4621703
Hidden Bibliographic Details
Other authors / contributors:Davis, Richard A.
ISBN:0387953515 (alk. paper)
Notes:Includes bibliographical references (p. [423]-428) and index.
System requirements: IBM PC or equivalent; 5 MB of hard disk space; Windows 95, NT 4.0, or later versions.
Table of Contents:
  • Preface
  • 1.. Introduction
  • 1.1.. Examples of Time Series
  • 1.2.. Objectives of Time Series Analysis
  • 1.3.. Some Simple Time Series Models
  • 1.3.1.. Some Zero-Mean Models
  • 1.3.2.. Models with Trend and Seasonality
  • 1.3.3.. A General Approach to Time Series Modeling
  • 1.4.. Stationary Models and the Autocorrelation Function
  • 1.4.1.. The Sample Autocorrelation Function
  • 1.4.2.. A Model for the Lake Huron Data
  • 1.5.. Estimation and Elimination of Trend and Seasonal Components
  • 1.5.1.. Estimation and Elimination of Trend in the Absence of Seasonality
  • 1.5.2.. Estimation and Elimination of Both Trend and Seasonality
  • 1.6.. Testing the Estimated Noise Sequence
  • Problems
  • 2.. Stationary Processes
  • 2.1.. Basic Properties
  • 2.2.. Linear Processes
  • 2.3.. Introduction to ARMA Processes
  • 2.4.. Properties of the Sample Mean and Autocorrelation Function
  • 2.4.1.. Estimation of [mu]
  • 2.4.2.. Estimation of [gamma]([middle dot]) and [rho]([middle dot])
  • 2.5.. Forecasting Stationary Time Series
  • 2.5.1.. The Durbin-Levinson Algorithm
  • 2.5.2.. The Innovations Algorithm
  • 2.5.3.. Prediction of a Stationary Process in Terms of Infinitely Many Past Values
  • 2.6.. The Wold Decomposition
  • Problems
  • 3.. ARMA Models
  • 3.1.. ARMA(p, q) Processes
  • 3.2.. The ACF and PACF of an ARMA(p, q) Process
  • 3.2.1.. Calculation of the ACVF
  • 3.2.2.. The Autocorrelation Function
  • 3.2.3.. The Partial Autocorrelation Function
  • 3.2.4.. Examples
  • 3.3.. Forecasting ARMA Processes
  • Problems
  • 4.. Spectral Analysis
  • 4.1.. Spectral Densities
  • 4.2.. The Periodogram
  • 4.3.. Time-Invariant Linear Filters
  • 4.4.. The Spectral Density of an ARMA Process
  • Problems
  • 5.. Modeling and Forecasting with ARMA Processes
  • 5.1.. Preliminary Estimation
  • 5.1.1.. Yule-Walker Estimation
  • 5.1.2.. Burg's Algorithm
  • 5.1.3.. The Innovations Algorithm
  • 5.1.4.. The Hannan-Rissanen Algorithm
  • 5.2.. Maximum Likelihood Estimation
  • 5.3.. Diagnostic Checking
  • 5.3.1.. The Graph of {{R[subscript t], t = 1, ..., n{{
  • 5.3.2.. The Sample ACF of the Residuals
  • 5.3.3.. Tests for Randomness of the Residuals
  • 5.4.. Forecasting
  • 5.5.. Order Selection
  • 5.5.1.. The FPE Criterion
  • 5.5.2.. The AICC Criterion
  • Problems
  • 6.. Nonstationary and Seasonal Time Series Models
  • 6.1.. ARIMA Models for Nonstationary Time Series
  • 6.2.. Identification Techniques
  • 6.3.. Unit Roots in Time Series Models
  • 6.3.1.. Unit Roots in Autoregressions
  • 6.3.2.. Unit Roots in Moving Averages
  • 6.4.. Forecasting ARIMA Models
  • 6.4.1.. The Forecast Function
  • 6.5.. Seasonal ARIMA Models
  • 6.5.1.. Forecasting SARIMA Processes
  • 6.6.. Regression with ARMA Errors
  • 6.6.1.. OLS and GLS Estimation
  • 6.6.2.. ML Estimation
  • Problems
  • 7.. Multivariate Time Series
  • 7.1.. Examples
  • 7.2.. Second-Order Properties of Multivariate Time Series
  • 7.3.. Estimation of the Mean and Covariance Function
  • 7.3.1.. Estimation of [mu]
  • 7.3.2.. Estimation of [Gamma](h)
  • 7.3.3.. Testing for Independence of Two Stationary Time Series
  • 7.3.4.. Bartlett's Formula
  • 7.4.. Multivariate ARMA Processes
  • 7.4.1.. The Covariance Matrix Function of a Causal ARMA Process
  • 7.5.. Best Linear Predictors of Second-Order Random Vectors
  • 7.6.. Modeling and Forecasting with Multivariate AR Processes
  • 7.6.1.. Estimation for Autoregressive Processes Using Whittle's Algorithm
  • 7.6.2.. Forecasting Multivariate Autoregressive Processes
  • 7.7.. Cointegration
  • Problems
  • 8.. State-Space Models
  • 8.1.. State-Space Representations
  • 8.2.. The Basic Structural Model
  • 8.3.. State-Space Representation of ARIMA Models
  • 8.4.. The Kalman Recursions
  • 8.5.. Estimation For State-Space Models
  • 8.6.. State-Space Models with Missing Observations
  • 8.7.. The EM Algorithm
  • 8.8.. Generalized State-Space Models
  • 8.8.1.. Parameter-Driven Models
  • 8.8.2.. Observation-Driven Models
  • Problems
  • 9.. Forecasting Techniques
  • 9.1.. The ARAR Algorithm
  • 9.1.1.. Memory Shortening
  • 9.1.2.. Fitting a Subset Autoregression
  • 9.1.3.. Forecasting
  • 9.1.4.. Application of the ARAR Algorithm
  • 9.2.. The Holt-Winters Algorithm
  • 9.2.1.. The Algorithm
  • 9.2.2.. Holt-Winters and ARIMA Forecasting
  • 9.3.. The Holt-Winters Seasonal Algorithm
  • 9.3.1.. The Algorithm
  • 9.3.2.. Holt-Winters Seasonal and ARIMA Forecasting
  • 9.4.. Choosing a Forecasting Algorithm
  • Problems
  • 10.. Further Topics
  • 10.1.. Transfer Function Models
  • 10.1.1.. Prediction Based on a Transfer Function Model
  • 10.2.. Intervention Analysis
  • 10.3.. Nonlinear Models
  • 10.3.1.. Deviations from Linearity
  • 10.3.2.. Chaotic Deterministic Sequences
  • 10.3.3.. Distinguishing Between White Noise and iid Sequences
  • 10.3.4.. Three Useful Classes of Nonlinear Models
  • 10.3.5.. Modeling Volatility
  • 10.4.. Continuous-Time Models
  • 10.5.. Long-Memory Models
  • Problems
  • A.. Random Variables and Probability Distributions
  • A.1.. Distribution Functions and Expectation
  • A.2.. Random Vectors
  • A.3.. The Multivariate Normal Distribution
  • Problems
  • B.. Statistical Complements
  • B.1.. Least Squares Estimation
  • B.1.1.. The Gauss-Markov Theorem
  • B.1.2.. Generalized Least Squares
  • B.2.. Maximum Likelihood Estimation
  • B.2.1.. Properties of Maximum Likelihood Estimators
  • B.3.. Confidence Intervals
  • B.3.1.. Large-Sample Confidence Regions
  • B.4.. Hypothesis Testing
  • B.4.1.. Error Probabilities
  • B.4.2.. Large-Sample Tests Based on Confidence Regions
  • C.. Mean Square Convergence
  • C.1.. The Cauchy Criterion
  • D.. An ITSM Tutorial
  • D.1.. Getting Started
  • D.1.1.. Running ITSM
  • D.2.. Preparing Your Data for Modeling
  • D.2.1.. Entering Data
  • D.2.2.. Information
  • D.2.3.. Filing Data
  • D.2.4.. Plotting Data
  • D.2.5.. Transforming Data
  • D.3.. Finding a Model for Your Data
  • D.3.1.. Autofit
  • D.3.2.. The Sample ACF and PACF
  • D.3.3.. Entering a Model
  • D.3.4.. Preliminary Estimation
  • D.3.5.. The AICC Statistic
  • D.3.6.. Changing Your Model
  • D.3.7.. Maximum Likelihood Estimation
  • D.3.8.. Optimization Results
  • D.4.. Testing Your Model
  • D.4.1.. Plotting the Residuals
  • D.4.2.. ACF/PACF of the Residuals
  • D.4.3.. Testing for Randomness of the Residuals
  • D.5.. Prediction
  • D.5.1.. Forecast Criteria
  • D.5.2.. Forecast Results
  • D.6.. Model Properties
  • D.6.1.. ARMA Models
  • D.6.2.. Model ACF, PACF
  • D.6.3.. Model Representations
  • D.6.4.. Generating Realizations of a Random Series
  • D.6.5.. Spectral Properties
  • D.7.. Multivariate Time Series
  • References
  • Index