Algebra /

Saved in:
Bibliographic Details
Author / Creator:Lang, Serge, 1927-2005.
Edition:Rev. 3rd ed.
Imprint:New York : Springer, ©2002.
Description:xv, 914 pages ; 24 cm.
Language:English
Series:Graduate texts in mathematics ; 211
Graduate texts in mathematics ; 211.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4636669
Hidden Bibliographic Details
ISBN:038795385X
9780387953854
Notes:Includes bibliographical references and index.
Standard no.:9780387953854
Table of Contents:
  • Part 1. The Basic Objects of Algebra
  • Chapter I. Groups
  • 1.. Monoids
  • 2.. Groups
  • 3.. Normal subgroups
  • 4.. Cyclic groups
  • 5.. Operations of a group on a set
  • 6.. Sylow subgroups
  • 7.. Direct sums and free abelian groups
  • 8.. Finitely generated abelian groups
  • 9.. The dual group
  • 10.. Inverse limit and completion
  • 11.. Categories and functors
  • 12.. Free groups
  • Chapter II. Rings
  • 1.. Rings and homomorphisms
  • 2.. Commutative rings
  • 3.. Polynomials and group rings
  • 4.. Localization
  • 5.. Principal and factorial rings
  • Chapter III. Modules
  • 1.. Basic definitions
  • 2.. The group of homomorphisms
  • 3.. Direct products and sums of modules
  • 4.. Free modules
  • 5.. Vector spaces
  • 6.. The dual space and dual module
  • 7.. Modules over principal rings
  • 8.. Euler-Poincare maps
  • 9.. The snake lemma
  • 10.. Direct and inverse limits
  • Chapter IV. Polynomials
  • 1.. Basic properties for polynomials in one variable
  • 2.. Polynomials over a factorial ring
  • 3.. Criteria for irreducibility
  • 4.. Hilbert's theorem
  • 5.. Partial fractions
  • 6.. Symmetric polynomials
  • 7.. Mason-Stothers theorem and the abc conjecture
  • 8.. The resultant
  • 9.. Power series
  • Part 2. Algebraic Equations
  • Chapter V. Algebraic Extensions
  • 1.. Finite and algebraic extensions
  • 2.. Algebraic closure
  • 3.. Splitting fields and normal extensions
  • 4.. Separable extensions
  • 5.. Finite fields
  • 6.. Inseparable extensions
  • Chapter VI. Galois Theory
  • 1.. Galois extensions
  • 2.. Examples and applications
  • 3.. Roots of unity
  • 4.. Linear independence of characters
  • 5.. The norm and trace
  • 6.. Cyclic extensions
  • 7.. Solvable and radical extensions
  • 8.. Abelian Kummer theory
  • 9.. The equation X[superscript n] - a = 0
  • 10.. Galois cohomology
  • 11.. Non-abelian Kummer extensions
  • 12.. Algebraic independence of homomorphisms
  • 13.. The normal basis theorem
  • 14.. Infinite Galois extensions
  • 15.. The modular connection
  • Chapter VII. Extensions of Rings
  • 1.. Integral ring extensions
  • 2.. Integral Galois extensions
  • 3.. Extension of homomorphisms
  • Chapter VIII. Transcendental Extensions
  • 1.. Transcendence bases
  • 2.. Noether normalization theorem
  • 3.. Linearly disjoint extensions
  • 4.. Separable and regular extensions
  • 5.. Derivations
  • Chapter IX. Algebraic Spaces
  • 1.. Hilbert's Nullstellensatz
  • 2.. Algebraic sets, spaces and varieties
  • 3.. Projections and elimination
  • 4.. Resultant systems
  • 5.. Spec of a ring
  • Chapter X. Noetherian Rings and Modules
  • 1.. Basic criteria
  • 2.. Associated primes
  • 3.. Primary decomposition
  • 4.. Nakayama's lemma
  • 5.. Filtered and graded modules
  • 6.. The Hilbert polynomial
  • 7.. Indecomposable modules
  • Chapter XI. Real Fields
  • 1.. Ordered fields
  • 2.. Real fields
  • 3.. Real zeros and homomorphisms
  • Chapter XII. Absolute Values
  • 1.. Definitions, dependence, and independence
  • 2.. Completions
  • 3.. Finite extensions
  • 4.. Valuations
  • 5.. Completions and valuations
  • 6.. Discrete valuations
  • 7.. Zeros of polynomials in complete fields
  • Part 3. Linear Algebra and Representations
  • Chapter XIII. Matrices and Linear Maps
  • 1.. Matrices
  • 2.. The rank of a matrix
  • 3.. Matrices and linear maps
  • 4.. Determinants
  • 5.. Duality
  • 6.. Matrices and bilinear forms
  • 7.. Sesquilinear duality
  • 8.. The simplicity of SL[subscript 2](F)/[plus or minus]1
  • 9.. The group SL[subscript n](F), n [greater than or equal] 3
  • Chapter XIV. Representation of One Endomorphism
  • 1.. Representations
  • 2.. Decomposition over one endomorphism
  • 3.. The characteristic polynomial
  • Chapter XV. Structure of Bilinear Forms
  • 1.. Preliminaries, orthogonal sums
  • 2.. Quadratic maps
  • 3.. Symmetric forms, orthogonal bases
  • 4.. Symmetric forms over ordered fields
  • 5.. Hermitian forms
  • 6.. The spectral theorem (hermitian case)
  • 7.. The spectral theorem (symmetric case)
  • 8.. Alternating forms
  • 9.. The Pfaffian
  • 10.. Witt's theorem
  • 11.. The Witt group
  • Chapter XVI. The Tensor Product
  • 1.. Tensor product
  • 2.. Basic properties
  • 3.. Flat modules
  • 4.. Extension of the base
  • 5.. Some functorial isomorphisms
  • 6.. Tensor product of algebras
  • 7.. The tensor algebra of a module
  • 8.. Symmetric products
  • Chapter XVII. Semisimplicity
  • 1.. Matrices and linear maps over non-commutative rings
  • 2.. Conditions defining semisimplicity
  • 3.. The density theorem
  • 4.. Semisimple rings
  • 5.. Simple rings
  • 6.. The Jacobson radical, base change, and tensor products
  • 7.. Balanced modules
  • Chapter XVIII. Representations of Finite Groups
  • 1.. Representations and semisimplicity
  • 2.. Characters
  • 3.. 1-dimensional representations
  • 4.. The space of class functions
  • 5.. Orthogonality relations
  • 6.. Induced characters
  • 7.. Induced representations
  • 8.. Positive decomposition of the regular character
  • 9.. Supersolvable groups
  • 10.. Brauer's theorem
  • 11.. Field of definition of a representation
  • 12.. Example: GL[subscript 2] over a finite field
  • Chapter XIX. The Alternating Product
  • 1.. Definition and basic properties
  • 2.. Fitting ideals
  • 3.. Universal derivations and the de Rham complex
  • 4.. The Clifford algebra
  • Part 4. Homological Algebra
  • Chapter XX. General Homology Theory
  • 1.. Complexes
  • 2.. Homology sequence
  • 3.. Euler characteristic and the Grothendieck group
  • 4.. Injective modules
  • 5.. Homotopies of morphisms of complexes
  • 6.. Derived functors
  • 7.. Delta-functors
  • 8.. Bifunctors
  • 9.. Spectral sequences
  • Chapter XXI. Finite Free Resolutions
  • 1.. Special complexes
  • 2.. Finite free resolutions
  • 3.. Unimodular polynomial vectors
  • 4.. The Koszul complex
  • Appendix 1. The Transcendence of e and [Pi]
  • Appendix 2. Some Set Theory
  • Bibliography
  • Index