Elements of photonics /

Saved in:
Bibliographic Details
Author / Creator:Iizuka, Keigo, 1931-
Imprint:New York : Wiley, c2002.
Description:2 v. : ill. ; 27 cm.
Language:English
Series:Wiley series in pure and applied optics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4708995
Hidden Bibliographic Details
ISBN:0471839388 (v. 1 : alk. paper)
0471408158 (v. 2 : alk. paper)
Notes:"A Wiley-Interscience publication."
Includes bibliographical references and index.
Table of Contents:
  • Volume 1.
  • Preface
  • 1. Fourier Optics: Concepts and Applications
  • 1.1. Plane Waves and Spatial Frequency
  • 1.2. Fourier Transform and Diffraction Patterns in Rectangular Coordinates
  • 1.3. Fourier Transform in Cylindrical Coordinates
  • 1.4. Special Functions in Photonics and Their Fourier Transforms
  • 1.5. The Convex Lens and Its Functions
  • 1.6. Spatial Frequency Approaches in Fourier Optics
  • 1.7. Spatial Filters
  • 1.8. Holography
  • Problems
  • References
  • 2. Boundaries, Near-Field Optics, and Near-Field Imaging
  • 2.1. Boundary Conditions
  • 2.2. Snell's Law
  • 2.3. Transmission and Reflection Coefficients
  • 2.4. Transmittance and Reflectance (at an Arbitrary Incident Angle)
  • 2.5. Brewster's Angle
  • 2.6. Total Internal Reflection
  • 2.7. Wave Expressions of Light
  • 2.8. The Evanescent Wave
  • 2.9. What Generates the Evanescent Waves?
  • 2.10. Diffraction-Unlimited Images out of the Evanescent Wave
  • Problems
  • References
  • 3. Fabry-Perot Resonators, Beams, and Radiation Pressure
  • 3.1. Fabry-Perot Resonators
  • 3.2. The Scanning Fabry-Perot Spectrometer
  • 3.3. Resolving Power of the Fabry-Perot Resonator
  • 3.4. Practical Aspects of Operating the Fabry-Perot Interferometer
  • 3.5. The Gaussian Beam as a Solution of the Wave Equation
  • 3.6. Transformation of a Gaussian Beam by a Lens
  • 3.7. Hermite Gaussian Beam (Higher Order Modes)
  • 3.8. The Gaussian Beam in a Spherical Mirror Cavity
  • 3.9. Resonance Frequencies of the Cavity
  • 3.10. Practical Aspects of the Fabry-Perot Interferometer
  • 3.11. Bessel Beams
  • 3.12. Manipulation with Light Beams
  • 3.13. Laser Cooling of Atoms
  • Problems
  • References
  • 4. Propagation of Light in Anisotropic Crystals
  • 4.1. Polarization in Crystals
  • 4.2. Susceptibility of an Anisotropic Crystal
  • 4.3. The Wave Equation in an Anisotropic Medium
  • 4.4. Solving the Generalized Wave Equation in Uniaxial Crystals
  • 4.5. Graphical Methods
  • 4.6. Treatment of Boundary Problems Between Anisotropic Media by the Indicatrix Method
  • Problems
  • References
  • 5. Optical Properties of Crystals Under Various External Fields
  • 5.1. Expressing the Distortion of the Indicatrix
  • 5.2. Electrooptic Effects
  • 5.3. Elastooptic Effect
  • 5.4. Magnetooptic Effect
  • 5.5. Optical Isolator
  • 5.6. Photorefractive Effect
  • 5.7. Optical Amplifier Based on the Photorefractive Effect
  • 5.8. Photorefractive Beam Combiner for Coherent Homodyne Detection
  • 5.9. Optically Tunable Optical Filter
  • 5.10. Liquid Crystals
  • 5.11. Dye-Doped Liquid Crystal
  • Problems
  • References
  • 6. Polarization of Light
  • 6.1. Introduction
  • 6.2. Circle Diagrams for Graphical Solutions
  • 6.3. Various Types of Retarders
  • 6.4. How to Use Waveplates
  • 6.5. Linear Polarizers
  • 6.6. Circularly Polarizing Sheets
  • 6.7. Rotators
  • 6.8. The Jones Vector and the Jones Matrix
  • 6.9. States of Polarization and Their Component Waves
  • Problems
  • References
  • 7. How to Construct and Use the Poincare Sphere
  • 7.1. Component Field Ratio in the Complex Plane
  • 7.2. Constant Azimuth [theta] and Ellipticity [epsilon] Lines in the Component Field Ratio Complex Plane
  • 7.3. Argand Diagram
  • 7.4. From Argand Diagram to Poincare Sphere
  • 7.5. Poincare Sphere Solutions for Retarders
  • 7.6. Poincare Sphere Solutions for Polarizers
  • 7.7. Poincare Sphere Traces
  • 7.8. Movement of a Point on the Poincare Sphere
  • Problems
  • References
  • 8. Phase Conjugate Optics
  • 8.1. The Phase Conjugate Mirror
  • 8.2. Generation of a Phase Conjugate Wave Using a Hologram
  • 8.3. Expressions for Phase Conjugate Waves
  • 8.4. Phase Conjugate Mirror for Recovering Phasefront Distortion
  • 8.5. Phase Conjugation in Real Time
  • 8.6. Picture Processing by Means of a Phase Conjugate Mirror
  • 8.7. Distortion-Free Amplification of Laser Light by Means of a Phase Conjugate Mirror
  • 8.8. Self-Tracking of a Laser Beam
  • 8.9. Picture Processing
  • 8.10. Theory of Phase Conjugate Optics
  • 8.11. The Gain of Forward Four-Wave Mixing
  • 8.12. Pulse Broadening Compensation by Forward Four-Wave Mixing
  • Problems
  • References
  • Appendix A. Derivation of the Fresnel-Kirchhoff Diffraction Formula from the Rayleigh-Sommerfeld Diffraction Formula
  • Appendix B. Why the Analytic Signal Method is Not Applicable to the Nonlinear System
  • Appendix C. Derivation of P[subscript NL]
  • Answers to Problems
  • Index
  • Volume II.
  • Preface
  • 9. Planar Optical Guides for Integrated Optics
  • 9.1. Classification of the Mathematical Approaches to the Slab Optical Guide
  • 9.2. Wave Optics Approach
  • 9.3. Characteristic Equations of the TM Modes
  • 9.4. Cross-Sectional Distribution of Light and its Decomposition into Component Plane Waves
  • 9.5. Effective Index of Refraction
  • 9.6. TE Modes
  • 9.7. Other Methods for Obtaining the Characteristic Equations
  • 9.8. Asymmetric Optical Guide
  • 9.9. Coupled Guides
  • Problems
  • References
  • 10. Optical Waveguides and Devices for Integrated Optics
  • 10.1. Rectangular Optical Waveguide
  • 10.2. Effective Index Method for Rectangular Optical Guides
  • 10.3. Coupling Between Rectangular Guides
  • 10.4. Conflection
  • 10.5. Various Kinds of Rectangular Optical Waveguides for Integrated Optics
  • 10.6. Power Dividers
  • 10.7. Optical Magic T
  • 10.8. Electrode Structures
  • 10.9. Mode Converter
  • Problems
  • References
  • 11. Modes and Dispersion in Optical Fibers
  • 11.1. Practical Aspects of Optical Fibers
  • 11.2. Theory of Step-Index Fibers
  • 11.3. Field Distributions Inside Optical Fibers
  • 11.4. Dual-Mode Fiber
  • 11.5. Photoimprinted Bragg Grating Fiber
  • 11.6. Definitions Associated with Dispersion
  • 11.7. Dispersion-Shifted Fiber
  • 11.8. Dispersion Compensator
  • 11.9. Ray Theory for Graded-Index Fibers
  • 11.10. Fabrication of Optical Fibers
  • 11.11. Cabling of Optical Fibers
  • 11.12. Joining Fibers
  • Problems
  • References
  • 12. Detecting Light
  • 12.1. Photomultiplier Tube
  • 12.2. Streak Camera
  • 12.3. Miscellaneous Types of Light Detectors
  • 12.4. PIN Photodiode and APD
  • 12.5. Direct Detection Systems
  • 12.6. Coherent Detection Systems
  • 12.7. Balanced Mixer
  • 12.8. Detection by Stimulated Effects
  • 12.9. Jitter in Coherent Communication Systems
  • 12.10. Coherent Detection Immune to Both Polarization and Phase Jitter
  • 12.11. Concluding Remarks
  • Problems
  • References
  • 13. Optical Amplifiers
  • 13.1. Introduction
  • 13.2. Basics of Optical Amplifiers
  • 13.3. Types of Optical Amplifiers
  • 13.4. Gain of Optical Fiber Amplifiers
  • 13.5. Rate Equations for the Three-Level Model Of Er[superscript 3+]
  • 13.6. Pros and Cons of 1.48-[mu]m and 0.98-[mu]m Pump Light
  • 13.7. Approximate Solutions of the Time-Dependent Rate Equations
  • 13.8. Pumping Configuration
  • 13.9. Optimum Length of the Fiber
  • 13.10. Electric Noise Power When the EDFA is Used as a Preamplifier
  • 13.11. Noise Figure of the Receiver Using the Optical Amplifier as a Preamplifier
  • 13.12. A Chain of Optical Amplifiers
  • 13.13. Upconversion Fiber Amplifier
  • Problems
  • References
  • 14. Transmitters
  • 14.1. Types of Lasers
  • 14.2. Semiconductor Lasers
  • 14.3. Rate Equations of Semiconductor Lasers
  • 14.4. Confinement
  • 14.5. Wavelength Shift of the Radiation
  • 14.6. Beam Pattern of a Laster
  • 14.7. Temperature Dependence of L-I Curves
  • 14.8. Semiconductor Laser Noise
  • 14.9. Single-Frequency Lasers
  • 14.10. Wavelength Tunable Laser Diode
  • 14.11. Laser Diode Array
  • 14.12. Multi-Quantum-Well Lasers
  • 14.13. Erbium-Doped Fiber Laser
  • 14.14. Light-Emitting Diode (LED)
  • 14.15. Fiber Raman Lasers
  • 14.16. Selection of Light Sources
  • Problems
  • References
  • 15. Stationary and Solitary Solutions in a Nonlinear Medium
  • 15.1. Nonlinear (Kerr) Medium
  • 15.2. Solutions in the Unbounded Kerr Nonlinear Medium
  • 15.3. Guided Nonlinear Boundary Wave
  • 15.4. Linear Core Layer Sandwiched by Nonlinear Cladding Layers
  • 15.5. How the Soliton Came About
  • 15.6. How a Soliton is Generated
  • 15.7. Self-Phase Modulation (SPM)
  • 15.8. Group Velocity Dispersion
  • 15.9. Differential Equation of the Envelope Function of the Solitons in the Optical Fiber
  • 15.10. Solving the Nonlinear Schrodinger Equation
  • 15.11. Fundamental Soliton
  • 15.12. Pulsewidth and Power to Generate a Fundamental Soliton
  • 15.13. Ever-Expanding Soliton Theories
  • Problems
  • References
  • 16. Communicating by Fiber Optics
  • 16.1. Overview of Fiber-Optic Communication Systems
  • 16.2. Modulation
  • 16.3. Multiplexing
  • 16.4. Light Detection Systems
  • 16.5. Noise in the Detector System
  • 16.6. Designing Fiber-Optic Communication Systems
  • Problems
  • References
  • Appendix A. PIN Photodiode on an Atomic Scale
  • A.1. PIN Photodiode
  • A.2. I-V Characteristics
  • Appendix B. Mode Density
  • Appendix C. Perturbation Theory
  • Answers to Problems
  • Index