|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
4709129 |
003 |
ICU |
005 |
20031021165300.0 |
008 |
020816s2002 si a b 001 0 eng c |
020 |
|
|
|a 9810247982
|
035 |
|
|
|a NYPGR50419747-B
|
035 |
|
|
|a (OCoLC)50419747
|
035 |
|
|
|a (WaOLN)M230000308
|
035 |
|
|
|a 90106412
|
040 |
|
|
|a *ZCU*
|c *ZCU*
|d NN
|d OCoLC
|d CStRLIN
|d OCoLC
|d OrLoB-B
|
042 |
|
|
|a pcc
|
050 |
|
4 |
|a QC174.85.L38
|b B43 2002
|
100 |
1 |
|
|a Beck, Christian.
|0 http://id.loc.gov/authorities/names/n92096676
|1 http://viaf.org/viaf/24643390
|
245 |
1 |
0 |
|a Spatio-temporal chaos and vacuum fluctuations of quantized fields /
|c Christian Beck.
|
260 |
|
|
|a Singapore ;
|a River Edge, N.J. :
|b World Scientific,
|c c2002.
|
300 |
|
|
|a xviii, 272 p. :
|b ill. ;
|c 23 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/n
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/nc
|
440 |
|
0 |
|a Advanced series in nonlinear dynamics ;
|v 21
|
504 |
|
|
|a Includes bibliographical references (p. 253-266) and index.
|
505 |
0 |
0 |
|g Ch. 1.
|t Chaotic quantization of field theories --
|g 1.1.
|t Stochastic quantization --
|g 1.2.
|t Dynamical generation of the noise --
|g 1.3.
|t The free Klein-Gordon field with chaotic noise --
|g 1.4.
|t Chaotic quantization in momentum space --
|g 1.5.
|t Gauge fields with chaotic noise --
|g 1.6.
|t Distinguished properties of Tchebyscheff maps --
|g 1.7.
|t Graph theoretical method --
|g 1.8.
|t Perturbative approach --
|g Ch. 2.
|t Chaotic strings --
|g 2.1.
|t Motivation for chaotic strings --
|g 2.2.
|t Anti-integrable limit of a continuum [phi][superscript N + I]-theory --
|g 2.3.
|t Possible generalizations --
|g 2.4.
|t Yet another way to derive the chaotic string --
|g 2.5.
|t Symmetry properties --
|g 2.6.
|t Stability properties --
|g 2.7.
|t Fixed points --
|g 2.8.
|t Spatio-temporal patterns --
|g Ch. 3.
|t Vacuum energy of chaotic strings --
|g 3.1.
|t Self energy of the N = 3 string --
|g 3.2.
|t Self energy of the N = 2 string --
|g 3.3.
|t Self energy for general N --
|g 3.4.
|t Interaction energy of chaotic strings --
|g 3.5.
|t Double strings --
|g 3.6.
|t Rotating strings --
|g Ch. 4.
|t Phase transitions and spontaneous symmetry breaking --
|g 4.1.
|t Some general remarks on phase transitions --
|g 4.2.
|t Vacuum expectation on 1-dimensional lattices --
|g 4.3.
|t Real scalar field on d-dimensional lattices --
|g 4.4.
|t Complex scalar field with U(1) symmetry --
|g 4.5.
|t Chaotic Higgs field with SU(2) symmetry --
|g Ch. 5.
|t Stochastic interpretation of the uncertainty relation --
|g 5.1.
|t Fluctuations of momenta and positions --
|g 5.2.
|t Newton's law and self interaction --
|g 5.3.
|t Coulomb forces and Laplacian coupling --
|g 5.4.
|t Duality of interpretations --
|g 5.5.
|t Feynman webs --
|g 5.6.
|t Physical interpretation of discrete string symmetries --
|g 5.7.
|t Fluctuations of the metric and a 1+1 dimensional model of quantum gravity --
|g Ch. 6.
|t Generalized statistical mechanics approach --
|g 6.1.
|t Heat bath of the vacuum --
|g 6.2.
|t States of maximum information --
|g 6.3.
|t States of minimum correlation --
|g 6.4.
|t Nonextensive statistical mechanics --
|g 6.5.
|t Energy dependence of the entropic index q --
|g 6.6.
|t Fluctuations of temperature --
|g 6.7.
|t Klein-Gordon field with fluctuating momenta --
|g Ch. 7.
|t Interaction energy of chaotic strings --
|g 7.1.
|t Analogue of the Einstein field equations --
|g 7.2.
|t The 3A string - electric interaction strengths of electrons and d-quarks --
|g 7.3.
|t The 3B string - weak interaction strengths of neutrinos and u-quarks --
|g 7.4.
|t High-precision prediction of the electroweak parameters --
|g 7.5.
|t The 2A string - strong interaction strength at the W-mass scale --
|g 7.6.
|t The 2B string - the lightest scalar glueball --
|g 7.7.
|t The 2A[superscript -] and 2B[superscript -] strings - towards a Higgs mass prediction --
|g 7.8.
|t Gravitational interaction --
|g Ch. 8.
|t Self energy of chaotic strings --
|g 8.1.
|t Self interacting scalar field equations --
|g 8.2.
|t The 3A string - weak and strong interactions of heavy fermion flavors --
|g 8.3.
|t The 3B string - further mixed states of heavy fermion flavors --
|g 8.4.
|t The 2A string - further bosons --
|g 8.5.
|t The 2B string - Yukawa interaction of the top quark --
|g 8.6.
|t Yukawa and gravitational interactions of all quarks and leptons --
|g 8.7.
|t Neutrino mass prediction --
|g 8.8.
|t The 2A[superscript -] and 2B[superscript -] strings - bosonic mass ratios --
|g Ch. 9.
|t Total vacuum energy of chaotic strings --
|g 9.1.
|t Hadronization of free quarks --
|g 9.2.
|t Mesonic states --
|g 9.3.
|t Baryonic states --
|g 9.4.
|t CP violation --
|g 9.5.
|t Planck scale interpretation --
|g 9.6.
|t Dark matter --
|g Ch. 10.
|t Grand unification --
|g 10.1.
|t Supersymmetric versus non-supersymmetric theories --
|g 10.2.
|t A supersymmetric scenario --
|g 10.3.
|t A non-supersymmetric scenario --
|g 10.4.
|t Final unification at the Planck scale --
|g 10.5.
|t Simplification for sin[superscript 2] [theta][subscript W] = 1/2 --
|g 10.6.
|t Bosons at the Planck scale --
|g 10.7.
|t Some thoughts on supersymmetry --
|g Ch. 11.
|t 11-dimensional space-time and quantum gravity --
|g 11.1.
|t Chaotic dynamics in compactified dimensions --
|g 11.2.
|t Quantized Einstein field equations --
|g 11.3.
|t N = 1 strings and Minkowski space --
|g 11.4.
|t Potentials for the N = 1 strings and inflation --
|g 11.5.
|t Black holes, Hawking radiation, and duality --
|g 11.6.
|t The limit [actual symbol not reproducible] --
|g 11.7.
|t Brief history of the universe - as seen from chaotic strings --
|g Ch. 12.
|t Summary --
|g 12.1.
|t Motivation and main results --
|g 12.2.
|t The chaotic string dynamics --
|g 12.3.
|t Vacuum energy of chaotic strings --
|g 12.4.
|t Fixing standard model parameters --
|g 12.5.
|t Numerical findings --
|g 12.6.
|t Physical embedding --
|g 12.7.
|t Conclusion.
|
520 |
|
|
|a "This book deals with new applications for coupled map lattices in quantum field theories and elementary particle physics"--P. xiii.
|
650 |
|
0 |
|a Coupled map lattices.
|0 http://id.loc.gov/authorities/subjects/sh92004266
|
650 |
|
0 |
|a Quantum field theory.
|0 http://id.loc.gov/authorities/subjects/sh85109461
|
650 |
|
0 |
|a Stochastic processes.
|0 http://id.loc.gov/authorities/subjects/sh85128181
|
650 |
|
0 |
|a String models.
|0 http://id.loc.gov/authorities/subjects/sh85129017
|
650 |
|
0 |
|a Chaotic behavior in systems.
|0 http://id.loc.gov/authorities/subjects/sh85022562
|
650 |
|
0 |
|a Statistical mechanics.
|0 http://id.loc.gov/authorities/subjects/sh85127571
|
650 |
|
0 |
|a Particles (Nuclear physics)
|0 http://id.loc.gov/authorities/subjects/sh85098374
|
650 |
|
7 |
|a Chaotic behavior in systems.
|2 fast
|0 http://id.worldcat.org/fast/fst00852171
|
650 |
|
7 |
|a Coupled map lattices.
|2 fast
|0 http://id.worldcat.org/fast/fst00881562
|
650 |
|
7 |
|a Particles (Nuclear physics)
|2 fast
|0 http://id.worldcat.org/fast/fst01054130
|
650 |
|
7 |
|a Quantum field theory.
|2 fast
|0 http://id.worldcat.org/fast/fst01085105
|
650 |
|
7 |
|a Statistical mechanics.
|2 fast
|0 http://id.worldcat.org/fast/fst01132070
|
650 |
|
7 |
|a Stochastic processes.
|2 fast
|0 http://id.worldcat.org/fast/fst01133519
|
650 |
|
7 |
|a String models.
|2 fast
|0 http://id.worldcat.org/fast/fst01135293
|
901 |
|
|
|a ToCBNA
|
903 |
|
|
|a HeVa
|
929 |
|
|
|a cat
|
999 |
f |
f |
|i 857f83ec-1a14-593f-b749-c8dde79d269d
|s a88bb5f9-568b-55af-8825-317e43d512ac
|
928 |
|
|
|t Library of Congress classification
|a QC174.85.L38 B43 2002
|l JCL
|c JCL-Sci
|i 4551315
|
927 |
|
|
|t Library of Congress classification
|a QC174.85.L38 B43 2002
|l JCL
|c JCL-Sci
|e CRERAR
|b 60838437
|i 7317655
|