Classical theory of gauge fields /

Saved in:
Bibliographic Details
Author / Creator:Rubakov, V. A.
Imprint:Princeton, N.J. : Chichester : Princeton University Press, 2002.
Description:x, 456 p. : ill. ; 23 cm.
Language:English
Russian
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4712601
Hidden Bibliographic Details
Other authors / contributors:Wilson, Stephen S.
ISBN:0691059276
Notes:Translated from the Russian.
Table of Contents:
  • Preface
  • Part I.
  • Chapter 1. Gauge Principle in Electrodynamics
  • 1.1. Electromagnetic-field action in vacuum
  • 1.2. Gauge invariance
  • 1.3. General solution of Maxwell's equations in vacuum
  • 1.4. Choice of gauge
  • Chapter 2. Scalar and Vector Fields
  • 2.1. System of units h = c = 1
  • 2.2. Scalarfield action
  • 2.3. Massive vectorfield
  • 2.4. Complex scalarfield
  • 2.5. Degrees of freedom
  • 2.6. Interaction offields with external sources
  • 2.7. Interactingfields. Gauge-invariant interaction in scalar electrodynamics
  • 2.8. Noether's theorem
  • Chapter 3. Elements of the Theory of Lie Groups and Algebras
  • 3.1. Groups
  • 3.2. Lie groups and algebras
  • 3.3. Representations of Lie groups and Lie algebras
  • 3.4. Compact Lie groups and algebras
  • Chapter 4. Non-Abelian Gauge Fields
  • 4.1. Non-Abelian global symmetries
  • 4.2. Non-Abelian gauge invariance and gaugefields: the group SU(2)
  • 4.3. Generalization to other groups
  • 4.4. Field equations
  • 4.5. Cauchy problem and gauge conditions
  • Chapter 5. Spontaneous Breaking of Global Symmetry
  • 5.1. Spontaneous breaking of discrete symmetry
  • 5.2. Spontaneous breaking of global U(1) symmetry. Nambu-Goldstone bosons
  • 5.3. Partial symmetry breaking: the SO(3) model
  • 5.4. General case. Goldstone's theorem
  • Chapter 6. Higgs Mechanism
  • 6.1. Example of an Abelian model
  • 6.2. Non-Abelian case: model with complete breaking of SU(2) symmetry
  • 6.3. Example of partial breaking of gauge symmetry: bosonic sector of standard electroweak theory
  • Supplementary Problems for
  • Part I.
  • Part II.
  • Chapter 7. The Simplest Topological Solitons
  • 7.1. Kink
  • 7.2. Scale transformations and theorems on the absence of solitons
  • 7.3. The vortex
  • 7.4. Soliton in a model of n-field in (2 + 1)-dimensional space-time
  • Chapter 8. Elements of Homotopy Theory
  • 8.1. Homotopy of mappings
  • 8.2. The fundamental group
  • 8.3. Homotopy groups
  • 8.4. Fiber bundles and homotopy groups
  • 8.5. Summary of the results
  • Chapter 9. Magnetic Monopoles
  • 9.1. The soliton in a model with gauge group SU(2)
  • 9.2. Magnetic charge
  • 9.3. Generalization to other models
  • 9.4. The limit mh/mv 0
  • 9.5. Dyons
  • Chapter 10. Non-Topological Solitons
  • Chapter 11. Tunneling and Euclidean Classical Solutions in Quantum Mechanics
  • 11.1. Decay of a metastable state in quantum mechanics of one variable
  • 11.2. Generalization to the case of many variables
  • 11.3. Tunneling in potentials with classical degeneracy
  • Chapter 12. Decay of a False Vacuum in Scalar Field Theory
  • 12.1. Preliminary considerations
  • 12.2. Decay probability: Euclidean bubble (bounce)
  • 12.3. Thin-wall approximation
  • Chapter 13. Instantons and Sphalerons in Gauge Theories
  • 13.1. Euclidean gauge theories
  • 13.2. Instantons in Yang-Mills theory
  • 13.3. Classical vacua and 0-vacua
  • 13.4. Sphalerons in four-dimensional models with the Higgs mechanism
  • Supplementary Problems for
  • Part II.
  • Part III.
  • Chapter 14. Fermions in Background Fields
  • 14.1. Free Dirac equation
  • 14.2. Solutions of the free Dirac equation. Dirac sea
  • 14.3. Fermions in background bosonicfields
  • 14.4. Fermionic sector of the Standard Model
  • Chapter 15. Fermions and Topological External Fields in Two-dimensional Models
  • 15.1. Charge fractionalization
  • 15.2. Level crossing and non-conservation of fermion quantum numbers
  • Chapter 16. Fermions in Background Fields of Solitons and Strings in Four-Dimensional Space-Time
  • 16.1. Fermions in a monopole backgroundfield: integer angular momentum and fermion number fractionalization
  • 16.2. Scattering of fermions off a monopole: non-conservation of fermion numbers
  • 16.3. Zero modes in a backgroundfield of a vortex: superconducting strings