Lectures on algebraic quantum groups /

Saved in:
Bibliographic Details
Author / Creator:BROWN, KEN A.
Imprint:Basel ; Boston : Birkhàˆuser, 2002.
Description:ix, 348 p. : ill. ; 24 cm.
Language:English
Series:Advanced courses in mathematics, CRM Barcelona
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4712970
Hidden Bibliographic Details
Other authors / contributors:Goodearl, K. R.
ISBN:3764367148 (pbk.)
Notes:Includes bibliographical references (p. [331]-339) and index.
Table of Contents:
  • Pt. I. Background and Beginnings
  • I.1. Beginnings and first examples
  • I.2. Further quantized coordinate rings
  • I.3. The quantized enveloping algebra of sl[subscript 2](k)
  • I.4. The finite dimensional representations of U[subscript q](sl[subscript 2](k))
  • I.5. Primer on semisimple Lie algebras
  • I.6. Structure and representation theory of U[subscript q](g) with q generic
  • I.7. Generic quantized coordinate rings of semisimple groups
  • I.8. O[subscript q](G) is a noetherian domain
  • I.9. Bialgebras and Hopf algebras
  • I.10. R-matrices
  • I.11. The Diamond Lemma
  • I.12. Filtered and graded rings
  • I.13. Polynomial identity algebras
  • I.14. Skew polynomial rings satisfying a polynomial identity
  • I.15. Homological conditions
  • I.16. Links and blocks
  • Pt. II. Generic Qantized Coordinate Rings
  • II.1. The prime spectrum
  • II.2. Stratification
  • II.3. Proof of the Stratification Theorem
  • II.4. Prime ideals in O[subscript q](G)
  • II.5. H-primes in iterated skew polynomial algebras
  • II.6. More on iterated skew polynomial algebras
  • II.7. The primitive spectrum
  • II.8. The Dixmier-Moeglin equivalence
  • II.9. Catenarity
  • II.10. Problems and conjectures
  • Pt. III. Quantized algebras at Roots of Unity
  • III.1. Finite dimensional modules for affine PI algebras
  • III.2. The finite dimensional representations of U[subscript [epsilon]](sl[subscript 2](k))
  • III.3. The finite dimensional representations of O[subscript [epsilon]](SL[subscript 2](k))
  • III.4. Basic properties of PI Hopf triples
  • III.5. Poisson structures
  • III.6. Structure of U[subscript [epsilon]](g)
  • III.7. Structure and representations of O[subscript [epsilon]](G)
  • III.8. Homological properties and the Azumaya locus
  • III.9. Muller's Theorem and blocks
  • III.10. Problems and perspectives.