Applied multivariate analysis /

Saved in:
Bibliographic Details
Author / Creator:Timm, Neil H.
Imprint:New York : Springer, c2002.
Description:xxiv, 693 p. : ill. ; 25 cm.
Language:English
Series:Springer texts in statistics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4721400
Hidden Bibliographic Details
ISBN:0387953477 (alk. paper)
Notes:Includes bibliographical references (p. [625]-666) and indexes.
Table of Contents:
  • 1. Introduction
  • 2. Vectors and Matrices
  • 2.1. Introduction
  • 2.2. Vectors, Vector Spaces, and Vector Subspaces
  • 2.3. Bases, Vector Norms, and the Algebra of Vector Spaces
  • 2.4. Basic Matrix Operations
  • 2.5. Rank, Inverse, and Determinant
  • 2.6. Systems of Equations, Transformations, and Quadratic Forms
  • 2.7. Limits and Asymptotics
  • 3. Multivariate Distributions and the Linear Model
  • 3.1. Introduction
  • 3.2. Random Vectors and Matrices
  • 3.3. The Multivariate Normal (MVN) Distribution
  • 3.4. The Chi-Square and Wishart Distributions
  • 3.5. Other Multivariate Distributions
  • 3.6. The General Linear Model
  • 3.7. Evaluating Normality
  • 3.8. Tests of Covariance Matrices
  • 3.9. Tests of Location
  • 3.10. Univariate Profile Analysis
  • 3.11. Power Calculations
  • 4. Multivariate Regression Models
  • 4.1. Introduction
  • 4.2. Multivariate Regression
  • 4.3. Multivariate Regression Example
  • 4.4. One-Way MANOVA and MANCOVA
  • 4.5. One-Way MANOVA/MANCOVA Examples
  • 4.6. MANOVA/MANCOVA with Unequal [Sigma][subscript i] or Nonnormal Data
  • 4.7. One-Way MANOVA with Unequal [Sigma][subscript i] Example
  • 4.8. Two-Way MANOVA/MANCOVA
  • 4.9. Two-Way MANOVA/MANCOVA Example
  • 4.10. Nonorthogonal Two-Way MANOVA Designs
  • 4.11. Unbalance, Nonorthogonal Designs Example
  • 4.12. Higher Ordered Fixed Effect, Nested and Other Designs
  • 4.13. Complex Design Examples
  • 4.14. Repeated Measurement Designs
  • 4.15. Repeated Measurements and Extended Linear Hypotheses Example
  • 4.16. Robustness and Power Analysis for MR Models
  • 4.17. Power Calculations - Power.sas
  • 4.18. Testing for Mean Differences with Unequal Covariance Matrices
  • 5. Seemingly Unrelated Regression Models
  • 5.1. Introduction
  • 5.2. The SUR Model
  • 5.3. Seeming Unrelated Regression Example
  • 5.4. The CGMANOVA Model
  • 5.5. CGMANOVA Example
  • 5.6. The GMANOVA Model
  • 5.7. GMANOVA Example
  • 5.8. Tests of Nonadditivity
  • 5.9. Testing for Nonadditivity Example
  • 5.10. Lack of Fit Test
  • 5.11. Sum of Profile Designs
  • 5.12. The Multivariate SUR (MSUR) Model
  • 5.13. Sum of Profile Example
  • 5.14. Testing Model Specification in SUR Models
  • 5.15. Miscellanea
  • 6. Multivariate Random and Mixed Models
  • 6.1. Introduction
  • 6.2. Random Coefficient Regression Models
  • 6.3. Univariate General Linear Mixed Models
  • 6.4. Mixed Model Examples
  • 6.5. Mixed Multivariate Models
  • 6.6. Balanced Mixed Multivariate Models Examples
  • 6.7. Double Multivariate Model (DMM)
  • 6.8. Double Multivariate Model Examples
  • 6.9. Multivariate Hierarchical Linear Models
  • 6.10. Tests of Means with Unequal Covariance Matrices
  • 7. Discriminant and Classification Analysis
  • 7.1. Introduction
  • 7.2. Two Group Discrimination and Classification
  • 7.3. Two Group Discriminant Analysis Example
  • 7.4. Multiple Group Discrimination and Classification
  • 7.5. Multiple Group Discriminant Analysis Example
  • 8. Principal Component, Canonical Correlation, and Exploratory Factor Analysis
  • 8.1. Introduction
  • 8.2. Principal Component Analysis
  • 8.3. Principal Component Analysis Examples
  • 8.4. Statistical Tests in Principal Component Analysis
  • 8.5. Regression on Principal Components
  • 8.6. Multivariate Regression on Principal Components Example
  • 8.7. Canonical Correlation Analysis
  • 8.8. Canonical Correlation Analysis Examples
  • 8.9. Exploratory Factor Analysis
  • 8.10. Exploratory Factor Analysis Examples
  • 9. Cluster Analysis and Multidimensional Scaling
  • 9.1. Introduction
  • 9.2. Proximity Measures
  • 9.3. Cluster Analysis
  • 9.4. Cluster Analysis Examples
  • 9.5. Multidimensional Scaling
  • 9.6. Multidimensional Scaling Examples
  • 10. Structural Equation Models
  • 10.1. Introduction
  • 10.2. Path Diagrams, Basic Notation, and the General Approach
  • 10.3. Confirmatory Factor Analysis
  • 10.4. Confirmatory Factor Analysis Examples
  • 10.5. Path Analysis
  • 10.6. Path Analysis Examples
  • 10.7. Structural Equations with Manifest and Latent Variables
  • 10.8. Structural Equations with Manifest and Latent Variables Example
  • 10.9. Longitudinal Analysis with Latent Variables
  • 10.10. Exogeniety in Structural Equation Models.