Acoustic characterization of contrast agents for medical ultrasound imaging /

Saved in:
Bibliographic Details
Author / Creator:Hoff, Lars.
Imprint:Dordrecht ; Boston : Kluwer Academic Publishers, 2001.
Description:xxi, 207 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4733844
Hidden Bibliographic Details
ISBN:1402001444 (alk. paper)
Notes:Includes bibliographical references (p. 199-207).
Table of Contents:
  • Preface
  • List of Figures
  • List of Tables
  • Symbols and Abbreviations
  • 1. Introduction
  • 1.1. Medical Ultrasound Imaging and Contrast Agents
  • 1.2. Underwater Acoustics and Bubbles
  • 1.3. Scope of this Book
  • 1.4. Medical Applications
  • 1.4.1. Ethical Aspects
  • 1.5. Overview of the Book
  • 2. The Bubble as a Linear Oscillator
  • 2.1. Some Comments Regarding Scale and Dimensions
  • 2.2. Rayleigh-scatter
  • 2.3. The Bubble as an Oscillator
  • 2.3.1. Equation of Motion for the Bubble
  • 2.3.2. Scatter and Absorption
  • 2.3.3. Attenuation
  • 2.3.4. Speed of Sound in a Bubbly Liquid
  • 2.4. Gas Bubble in a Shell
  • 3. Nonlinear Bubble Theory
  • 3.1. Nonlinear Acoustics in Diagnostic Ultrasound
  • 3.1.1. Nonlinearity in Liquids with and without Bubbles
  • 3.1.2. Linear and Nonlinear Systems
  • 3.1.3. Bubble Detection Based on Nonlinear Acoustics
  • 3.2. Equations of Motion for the Liquid
  • 3.2.1. Incompressible Liquid: The Rayleigh-Plesset Equation
  • 3.2.2. Linear Propagation I: Trilling Model
  • 3.2.3. Linear Propagation II: Keller-Miksis Model
  • 3.2.4. Comparison between the Liquid Models
  • 3.3. Viscous Damping in the Liquid
  • 3.3.1. Incompressible Liquid
  • 3.3.2. Compressible Liquid: Acoustic Approximation
  • 3.4. Pressure Difference across a Spherical Shell
  • 3.4.1. Shell Elasticity
  • 3.4.2. Comments and Alternative Shell Models
  • 3.4.3. Shell Viscosity
  • 3.4.4. Summary: Tension across the Shell
  • 3.5. Pressure in the Gas
  • 3.6. Boundary Condition: Pressure at the Bubble Surface
  • 3.7. Equations in Dimensionless Variables
  • 3.7.1. Pressure at the Bubble Surface
  • 3.7.2. Rayleigh-Plesset Model
  • 3.7.3. Trilling Model
  • 3.7.4. Keller-Miksis Model
  • 3.7.5. Modified Rayleigh-Plesset Model
  • 3.7.6. Reconstitution of Dimensional Variables
  • 4. Measurement Systems
  • 4.1. Acoustic Attenuation
  • 4.1.1. Measurement of Attenuation Spectra
  • 4.1.2. Sensitivity to Hydrostatic Pressure
  • 4.2. Acoustic Backscatter
  • 5. Estimation of Shell Material Properties
  • 5.1. Composition of the Microbubbles
  • 5.2. Theory
  • 5.2.1. Church's Model for Albunex: Comparison with the Models of Chapter 3
  • 5.2.2. Linearization
  • 5.2.3. Acoustic Attenuation and Scatter
  • 5.2.4. Thermal and Acoustic Damping
  • 5.3. Results
  • 5.3.1. Size Distribution
  • 5.3.2. Acoustic Attenuation Spectra
  • 5.3.3. Estimation of Shell Parameters
  • 5.4. Some Calculations Based on the Results
  • 5.4.1. Damping Constants
  • 5.4.2. Microbubble Stiffness
  • 5.4.3. Resonance Frequency and Scattering Cross Section
  • 5.5. Discussion
  • 5.5.1. Shell Thickness
  • 5.6. Summary
  • 6. Comparison Between Contrast Agents
  • 6.1. Properties of the Three Agents
  • 6.1.1. Size Distributions
  • 6.1.2. Acoustic Attenuation Spectra
  • 6.2. Estimates for Shell Material Properties
  • 6.2.1. Albunex
  • 6.2.2. Sonazoid
  • 6.3. Sensitivity to Hydrostatic Pressure
  • 6.3.1. Polymeric Microbubbes
  • 6.3.2. Sonazoid
  • 6.4. Velocity Dispersion
  • 6.4.1. Calculation of Phase Velocity
  • 6.4.2. Measured Dispersion
  • 6.5. Theoretical Calculations Based on the Results
  • 6.5.1. Resonance Frequency and Bulk Modulus
  • 6.5.2. Scattering Cross Section
  • 6.5.3. Damping Constants
  • 6.6. Summary: Comparison between the Agents
  • 7. Scatter at Higher Harmonics
  • 7.1. Experimental Setup
  • 7.1.1. Transmit Pulses
  • 7.1.2. Receiver Characteristics
  • 7.2. Results
  • 7.2.1. Received Spectra
  • 7.2.2. Simulated Spectra
  • 7.3. Simulated Bubble Radius and Bubble Destruction
  • 7.4. Discussion
  • 7.5. Conclusion
  • 8. Simulations of Nonlinear Bubble Response
  • 8.1. Implementation of Nonlinear Bubble Models
  • 8.1.1. Simulation Parameters
  • 8.2. Pulse Inversion
  • 8.2.1. Results of Simulations
  • 8.2.2. Summary and Comments
  • 8.3. Subharmonic Oscillations
  • 8.3.1. Simulations of Subharmonic Response
  • 8.3.2. Comments and Relation to Earlier Results
  • 8.3.3. Pulse Responses
  • 8.3.4. Difference between Pulse and CW Responses
  • 9. Summary and Conclusions
  • References