Complexity of lattice problems : a cryptographic perspective /

Saved in:
Bibliographic Details
Author / Creator:Micciancio, Daniele.
Imprint:Boston : Kluwer Academic, c2002.
Description:x, 220 p. : ill. ; 25 cm.
Language:English
Series:The Kluwer international series in engineering and computer science ; SECS 671
Kluwer international series in engineering and computer science ; SECS 671.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4735002
Hidden Bibliographic Details
Other authors / contributors:Goldwasser, S. (Shafi), 1958-
ISBN:0792376889 (alk. paper)
Notes:Includes bibliographical references (p. [211]-216) and index.
Table of Contents:
  • Preface
  • 1.. Basics
  • 1. Lattices
  • 1.1. Determinant
  • 1.2. Successive minima
  • 1.3. Minkowski's theorems
  • 2. Computational problems
  • 2.1. Complexity Theory
  • 2.2. Some lattice problems
  • 2.3. Hardness of approximation
  • 3. Notes
  • 2.. Approximation Algorithms
  • 1. Solving SVP in dimension 2
  • 1.1. Reduced basis
  • 1.2. Gauss' algorithm
  • 1.3. Running time analysis
  • 2. Approximating SVP in dimension n
  • 2.1. Reduced basis
  • 2.2. The LLL basis reduction algorithm
  • 2.3. Running time analysis
  • 3. Approximating CVP in dimension n
  • 4. Notes
  • 3.. Closest Vector Problem
  • 1. Decision versus Search
  • 2. NP-completeness
  • 3. SVP is not harder than CVP
  • 3.1. Deterministic reduction
  • 3.2. Randomized Reduction
  • 4. Inapproximability of CVP
  • 4.1. Polylogarithmic factor
  • 4.2. Larger factors
  • 5. CVP with preprocessing
  • 6. Notes
  • 4.. Shortest Vector Problem
  • 1. Kannan's homogenization technique
  • 2. The Ajtai-Micciancio embedding
  • 3. NP-hardness of SVP
  • 3.1. Hardness under randomized reductions
  • 3.2. Hardness under nonuniform reductions
  • 3.3. Hardness under deterministic reductions
  • 4. Notes
  • 5.. Sphere Packings
  • 1. Packing Points in Small Spheres
  • 2. The Exponential Sphere Packing
  • 2.1. The Schnorr-Adleman prime number lattice
  • 2.2. Finding clusters
  • 2.3. Some additional properties
  • 3. Integer Lattices
  • 4. Deterministic construction
  • 5. Notes
  • 6.. Low-Degree Hypergraphs
  • 1. Sauer's Lemma
  • 2. Weak probabilistic construction
  • 2.1. The exponential bound
  • 2.2. Well spread hypergraphs
  • 2.3. Proof of the weak theorem
  • 3. Strong probabilistic construction
  • 4. Notes
  • 7.. Basis Reduction Problems
  • 1. Successive minima and Minkowski's reduction
  • 2. Orthogonality defect and KZ reduction
  • 3. Small rectangles and the covering radius
  • 4. Notes
  • 8.. Cryptographic Functions
  • 1. General techniques
  • 1.1. Lattices, sublattices and groups
  • 1.2. Discrepancy
  • 1.3. Statistical distance
  • 2. Collision resistant hash functions
  • 2.1. The construction
  • 2.2. Collision resistance
  • 2.3. The iterative step
  • 2.4. Almost perfect lattices
  • 3. Encryption Functions
  • 3.1. The GGH scheme
  • 3.2. The HNF technique
  • 3.3. The Ajtai-Dwork cryptosystem
  • 3.4. Ntru
  • 4. Notes
  • 9.. Interactive Proof Systems
  • 1. Closest vector problem
  • 1.1. Proof of the soundness claim
  • 1.2. Conclusion
  • 2. Shortest vector problem
  • 3. Treating other norms
  • 4. What does it mean?
  • 5. Notes
  • References
  • Index