The theory of toroidally confined plasmas /

Saved in:
Bibliographic Details
Author / Creator:White, R. B.
Edition:2nd ed.
Imprint:London : Imperial College Press ; Singapore ; River Edge, NJ : Distributed by World Scientific Pub. Co., c2001.
Description:xx, 367 p. : ill. ; 23 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4736071
Hidden Bibliographic Details
Varying Form of Title:Toroidally confined plasmas
Other uniform titles:White, R. B. Theory of tokamak plasmas.
ISBN:1860942776
Notes:Rev. ed. of: Theory of tokamak plasmas. Amsterdam ; New York : Elsevier, 1989.
Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Chapter 1. Toroidal Configuration
  • 1.1. Introduction
  • 1.2. General Coordinates
  • 1.3. Basis Vectors, Metric Tensor
  • 1.4. Vector Operators
  • 1.5. Magnetic Field Representation
  • 1.6. Magnetic Surfaces
  • 1.7. Magnetic Surface Destruction
  • 1.8. The Standard Map
  • 1.9. Problems
  • 1.10. References
  • Chapter 2. Equilibrium
  • 2.1. Introduction
  • 2.2. The Virial Theorem
  • 2.3. Field Line Curvature
  • 2.4. General 3-D Equilibria
  • 2.5. Axisymmetric Equilibria
  • 2.6. Tokamak Ordering
  • 2.7. Cylindrical Tokamak Equilibria
  • 2.8. The Shafranov Equilibrium
  • 2.9. High Beta Equilibrium
  • 2.10. Flux Conserving Equilibria
  • 2.11. Equilibrium Scaling
  • 2.12. Equilibrium Types
  • 2.13. Problems
  • 2.14. References
  • Chapter 3. Guiding Center Motion
  • 3.1. Introduction
  • 3.2. Hamiltonian Formulation
  • 3.3. Orbit Classification
  • 3.4. Integral Invariants
  • 3.5. Toroidal Precession
  • 3.6. Large Aspect Ratio
  • 3.7. Diamagnetic Current
  • 3.8. Confinement of Fusion Alpha Particles
  • 3.9. Problems
  • 3.10. References
  • Chapter 4. Linear Ideal Modes
  • 4.1. Introduction
  • 4.2. Plasma Kinetic and Potential Energy
  • 4.3. Self Adjointness of the Potential Energy
  • 4.4. The Energy Principle
  • 4.5. Convenient form for [delta]W
  • 4.6. The Energy Principle in Cylindrical Geometry
  • 4.7. MHD Instabilities in Low [beta] Tokamaks
  • 4.8. Kink Mode
  • 4.9. The M=1 External Kink
  • 4.10. The Internal Kink Mode
  • 4.11. Ballooning Instabilities
  • 4.12. Magnetic Well
  • 4.13. Ballooning, Simple Equilibria
  • 4.14. Mercier, Suydam Criteria
  • 4.15. Modification of the Ballooning Equation
  • 4.16. Tae Modes
  • 4.17. Axisymmetric Modes
  • 4.18. Numerical MHD Spectrum
  • 4.19. Shape and Aspect Ratio
  • 4.20. Problems
  • 4.21. References
  • Chapter 5. Linear Resistive Modes
  • 5.1. Introduction
  • 5.2. The Tearing Mode
  • 5.3. The m = 1 Tearing Mode
  • 5.4. The Skin Current Profile
  • 5.5. Toroidal and Shaping Effects
  • 5.6. The Resistive Surface Kink Mode
  • 5.7. Optimized Profiles
  • 5.8. The Rippling Mode
  • 5.9. The Resistive Interchange Mode
  • 5.10. Resistive Ballooning
  • 5.11. Diamagnetic Rotation
  • 5.12. Problems
  • 5.13. References
  • Chapter 6. Nonlinear Behavior
  • 6.1. Introduction
  • 6.2. The Reduced Equations
  • 6.3. Nonlinear External Kink
  • 6.4. Vacuum Bubbles
  • 6.5. Nonlinear Internal Kink
  • 6.6. Complete Resistive Reconnection
  • 6.7. Nonlinear Tearing Mode Analysis
  • 6.8. Sawtooth Oscillations
  • 6.9. Disruptions
  • 6.10. Empirical Limits
  • 6.11. Stabilization of Tearing Modes
  • 6.12. Problems
  • 6.13. References
  • Chapter 7. Mode-Particle Interaction
  • 7.1. Introduction
  • 7.2. Passing Particle Resonance
  • 7.3. Tae Mode Drive and Saturation
  • 7.4. Trapped Particle Resonance
  • 7.5. Fishbone Induced Loss
  • 7.6. Fishbone Destabilization
  • 7.7. The Fishbone Cycle
  • 7.8. Resistive Kinetic Internal Kink
  • 7.9. Stabilization of the Sawtooth
  • 7.10. Ballooning Destabilization
  • 7.11. Alpha Particle Effects
  • 7.12. Problems
  • 7.13. References
  • Chapter 8. Transport
  • 8.1. Introduction
  • 8.2. The Drift Kinetic Equation
  • 8.3. Cross Field Diffusion
  • 8.4. Bootstrap Current
  • 8.5. Neoclassical Tearing
  • 8.6. Ware Pinch
  • 8.7. Magnetic Field Ripple Transport
  • 8.8. Diffusion in a Stochastic Field
  • 8.9. Island Induced Diffusion
  • 8.10. Anomalous Transport
  • 8.11. Confinement Scaling
  • 8.12. Burn Control
  • 8.13. Problems
  • 8.14. References
  • Chapter 9. Phase Integral Methods
  • 9.1. Introduction
  • 9.2. Connection Formulae
  • 9.3. Causality
  • 9.4. Bound States - Instabilities
  • 9.5. Overdense Barrier - Scattering
  • 9.6. Underdense Barrier - Scattering
  • 9.7. Eigenvalue Problems
  • 9.8. Problems
  • 9.9. References
  • Index