Substitutions in dynamics, arithmetics, and combinatorics /

Saved in:
Bibliographic Details
Author / Creator:Pytheas Fogg, N.
Imprint:Berlin ; New York : Springer, 2002.
Description:xvii, 402 p. : ill. ; 24 cm.
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1794
Lecture notes in mathematics (Springer-Verlag) ; 1794.
Subject:
Format: E-Resource Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4745036
Hidden Bibliographic Details
Other authors / contributors:Berthé, V. (Valérie), 1957-
ISBN:3540441417 (pbk. : acid-free paper)
Notes:Includes bibliographical references and index.
Also available on the Internet.
Table of Contents:
  • Preface
  • List of contributors
  • 1. Basic notions on substitutions
  • 1.1. Word combinatorics
  • 1.2. Substitutions
  • 1.3. Automata
  • 1.4. Topological and measure-theoretic dynamical systems
  • 1.5. Spectral theory
  • 1.6. Factors of substitutive dynamical systems
  • Part I. Arithmetics and combinatorics of substitutions
  • 2. Substitutions, arithmetic and finite automata: an introducion
  • 2.1. The Morse sequence
  • 2.2. The Rudin-Shapiro sequence
  • 2.3. The Baum-Sweet sequence
  • 2.4. The Cantor sequence
  • 2.5. An application of substitutions to criteria of divisibility
  • 2.6. The Fibonacci sequence
  • 3. Automatic sequences and transcendence (by V. Berthe)
  • 3.1. Introduction
  • 3.2. The Christol, Kamae, Mendès France, and Rauzy theorem
  • 3.3. Transcendence in the real case and continued fractions
  • 3.4. Some functions defined by Carlitz
  • 3.5. Some examples of automaton proofs
  • 3.6. Conclusion
  • 4. Substitutions and partitions of the set of positive integers
  • 4.1. Beatty and Sturmian sequences, and associated partitions
  • 4.2. Partitions given by substitutions
  • 4.3. Similis partitions
  • 4.4. Log-fixed points and Kolakoski words
  • 4.5. Problems
  • Part II. Dynamics of substitutions
  • 5. Substitutions and symbolic dynamical systems
  • 5.1. The Morse sequence: elementary properties
  • 5.2. The Morse sequence: advanced properties
  • 5.3. The Rudin-Shapiro sequence
  • 5.4. The Fibonacci sequence
  • 5.5. The Chacon sequence
  • 6. Sturmian Sequences
  • 6.1. Sturmian sequences. Basic properties
  • 6.2. Biinfinite Sturmian sequences
  • 6.3. Coding sequences for Sturmian sequences and Sturmian systems160
  • 6.4. Sturmian sequences: arithmetic properties; continued fractions 175
  • 6.5. Sturmian substitutions. Dynamical interpretations
  • 6.6. Natural extension for the recoding of Sturmian sequences
  • 6.7. Miscellaneous remarks
  • 7. Spectral theory and geometric representation of substitutions
  • 7.1. Shifts of finite type: introduction
  • 7.2. Substitutive dynamical systems and shifts of finite type
  • 7.3. Spectral theory of substitutive dynamical systems
  • 7.4. The Rauzy fractal
  • 7.5. Geometric realization of substitutions of Pisot type
  • 7.6. Extensions and applications
  • 8. Diophantine approximations, substitutions, and fractals
  • 8.1. Substitutions and domains with fractal boundary
  • 8.2. Generalized substitutions
  • 8.3. Dynamical systems associated with the stepped surface
  • 8.4. Renormalization and realization of substitutive systems
  • 8.5. Fractal boundary
  • 8.6. Continued fraction expansions and substitutions
  • 8.7. Diophantine applications
  • Part III. Extensions to free groups and interval transformations
  • 9. Infinite words generated by invertible substitutions
  • 9.1. Preliminary
  • 9.2. Structure of invertible substitutions
  • 9.3. Singular words of the Fibonacci word and applications
  • 9.4. Properties of factors of the fixed points of invertible substi- tutions
  • 10. Polynomial dynamical systems associated with substitutions
  • 10.1. Polynomial identities in the algebra of 2 × 2-matrices
  • 10.2. Trace maps
  • 10.3. The case of 3 × 3-matrices
  • 10.4. Comments
  • 11. Piecewise linear transformations of the unit interval and Cantor sets
  • 11.1. Definitions
  • 11.2. Ergodic properties of piecewise Markov transformations
  • 11.3. Non-Markov transformation: ß-expansion
  • 11.4. Cantor sets
  • 12. Some open problems
  • 12.1. The S-adic conjecture
  • 12.2. Multidimensional continued fraction expansions
  • 12.3. Combinatorics on two-dimensional words
  • 12.4. Substitutions, rotations and toral automorphisms
  • 12.5. Arithmetics in and
  • A. Undecomposable matrices in dimension 3
  • References
  • Index