Capillary surfaces : shape-stability-dynamics, in particular under weightlessness /

Saved in:
Bibliographic Details
Author / Creator:Langbein, Dieter W., 1932-
Imprint:Berlin ; New York : Springer, c2002.
Language:English
Series:Springer tracts in modern physics, 0081-3869 ; v. 178
Springer tracts in modern physics ; 178.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4745701
Hidden Bibliographic Details
ISBN:3540418156
Language / Script:Available for non-commercial, internal use by students, on-site users of library facilities, and faculty for academic and research purposes only.
Notes:Caption title ; description based on screen of 2002-09-11.
Includes bibliographical references and index.
Access restricted to subscribers.
Text (HTML/PDF), image (GIF/PDF) and search engine.
Also published in print format.
Mode of access: Intranet.
Table of Contents:
  • Notation
  • 1. Introduction
  • 1.1. Space Missions
  • 1.2. Interdisciplinary Stimuli
  • 1.3. Problems of Fluid Physics
  • 1.4. Zero Mass Acceleration or Weightlessness
  • 1.5. Flight Selection and Simulation
  • References
  • 2. Interface Tension and Contact Angle
  • 2.1. Molecular Attraction and Condensation
  • 2.2. The Interface Tension
  • 2.2.1. Theoretical Aspects
  • 2.2.2. Experimental Methods
  • 2.2.3. Qualitative Rules for the Interface Energy
  • 2.3. The Static Contact Angle
  • 2.4. The Dynamic Contact Angle
  • 2.5. Merging of Drops and Bubbles
  • 2.6. Adhesion Forces in Liquid Films
  • References
  • 3. Capillary Shape and Stability
  • 3.1. Balance of Forces
  • 3.2. Minimization of Energy
  • 3.3. Analytical Solutions of the Capillary Equation
  • 3.3.1. Rise of Liquid in a Tube
  • 3.3.2. Spherical Surfaces
  • 3.3.3. Rise of a Liquid in Contact with an Infinite Plane
  • 3.4. Axisymmetric Surfaces
  • 3.5. Container Shape and Wetting
  • 3.6. Drops at Low Bond Numbers
  • 3.7. Representations of the Capillary Equation
  • 3.7.1. Cartesian Coordinates z(x,y)
  • 3.7.2. Polar Coordinates r($, y> )
  • 3.7.3. Cylindrical Coordinates r(ip, z)
  • 3.7.4. Cylindrical Coordinates z(r, y> )
  • 3.7.5. Axisymmetry
  • References
  • 4. Stability Criteria
  • 4.1. Stability of Capillary Surfaces
  • 4.2. Breakage of Cylindrical Surfaces
  • 4.3. Second Variation of Energy
  • 4.4. Normal Deformations of Liquid Zones
  • 4.4.1. Instabilities of Periodic Surfaces
  • 4.4.2. Normal Deformations of a Circular Cylinder
  • 4.4.3. The Symmetric Instability of the Catenoid
  • 4.5. Nonaxisymmetric Instabilities
  • 4.5.1. Lateral Deformations of the Center Line
  • 4.5.2. Liquid Rings
  • 4.6. The Minimum-Volume Condition
  • 4.7. Linear Stability Analysis
  • References
  • 5. Axisymmetric Liquid Columns at Rest and Under Rotation
  • 5.1. Introduction
  • 5.2. The Normal Deformations
  • 5.2.1. The Symmetric Mode D{{2,0}}
  • 5.2.2. The Antimetric Mode D{{1,0}}
  • 5.2.3. The Lateral Instability D{{0,1}}
  • 5.2.4. Stability of a Liquid Ring
  • 5.3. Nearly Cylindrical Surfaces
  • 5.3.1. Fourier Expansion of an Axisymmetric Surface
  • 5.3.2. The Symmetric Instability D{{2, 0}}
  • 5.3.3. The Antimetric Instability d{{1, 0}}
  • 5.3.4. The Lateral Mode D{{0, 1}}
  • 5.3.5. Nonzero Bond Number
  • 5.4. Rotating Free Drops
  • 5.4.1. Motivation
  • 5.4.2. Shape of Rotating Drops
  • 5.4.3. Stability
  • 5.4.4. Conservation of Angular Momentum
  • 5.4.5. Finite-Element Analysis
  • References
  • 6. Liquid Zones
  • 6.1. Liquid Bridges Between Parallel Plates
  • 6.1.1. Introduction
  • 6.1.2. Branches of Solutions of the Capillary Equation
  • 6.1.3. Properties of the Inflection Point
  • 6.1.4. The Instability Due to the Bifurcation (Due to D{{1, 0}})
  • 6.1.5. The Instability Due to the Minimum Volume (Due to D{{2, 0}})
  • 6.1.6. Differing Contact Angles
  • 6.1.7. Gravity
  • 6.1.8. Key Points
  • 6.2. Double Float Zones
  • 6.2.1. Introduction
  • 6.2.2. Unduloids and Nodoids
  • 6.2.3. Branches of Solutions
  • 6.2.4. Results of the Spacelab Experiments
  • 6.2.5. The Stability Diagram
  • 6.2.6. Key Points
  • References
  • 7. Canthotaxis/Wetting Barriers/Pinning Lines
  • 7.1. Introduction
  • 7.2. Straight Wetting Barriers
  • 7.2.1. The Wetting Tile
  • 7.2.2. The Wetting Stripe
  • 7.2.3. The Wetting Cross
  • 7.2.4. Circular Tubes
  • 7.2.5. Large Liquid Volumes
  • 7.3. Liquid Surfaces in Wedges
  • 7.4. Taylor Expansions at Small Radü
  • 7.4.1. Alternative Winding Functions
  • 7.5. Liquid Surfaces in Square Cylinders, cos ¿ 1 + cos ¿ 2 =0
  • 7.6. Towards Modeling Canthotaxis
  • 7.6.1. Helicoid and Catenoid
  • 7.6.2. Winding Rates
  • 7.6.3. Winding Rate of Infinity
  • 7.6.4. Circular Tube with Complementary Contact Angles
  • References
  • 8. Cylindrical Containers
  • 8.1. Introduction
  • 8.1.1. Fields of Application
  • 8.1.2. Liquids in Edges
  • 8.2. The Integral Theorem for Cylindrical Vessels
  • 8.2.1. Application of Divergence Theorem
  • 8.2.2. Minimization of Energy with Respect to Height
  • 8.2.3. Evaluation of Wedge Contributions
  • 8.3. Examples
  • 8.3.1. Ice Cream Cone
  • 8.3.2. Rhombic Cylinder
  • 8.3.3. Regular Polygon
  • 8.3.4. Liquid in a Rotating Wedge
  • 8.3.5. No Wetting of Wedge
  • 8.3.6. Liquid Volume Pressed into a Wedge
  • 8.4. Stability of Convex Cylindrical Surfaces
  • 8.4.1. Longitudinal Normal Deformations
  • 8.4.2. Axially Periodic Meniscus Shapes
  • 8.4.3. Adjustment to Fit Solid Edges
  • 8.4.4. Volume and Energy
  • 8.4.5. Rotating Wedges
  • 8.5. The MAXUS Experiment DYLCO
  • References
  • 9. Liquid Surfaces in Polyhedral Containers
  • 9.1. Spherical Surfaces at Edges and Corners
  • 9.1.1. Nonwetting Drops
  • 9.1.2. Drops in Planar Wedges
  • 9.1.3. Drops in Spherical Wedges
  • 9.1.4. Liquid Drops in a Tripod
  • 9.1.5. Regular W-Pods
  • 9.2. Transition Between the Corner and the Wedge
  • 9.2.1. Liquid Volumes in Polyhedra
  • 9.2.2. Exponential Piling-Up in Corners
  • 9.2.3. Numerical Calculation of Corner Volume
  • 9.2.4. Similarity of Corner Volumes
  • 9.2.5. Finite Wedge Length
  • 9.2.6. Accuracy of the Present Approach
  • 9.2.7. Prospects
  • References
  • 10. Playing with Stability
  • 10.1. Proboscides
  • 10.1.1. Finite Rhombic Prisms
  • 10.1.2. Canonical Proboscides
  • 10.1.3. Interface Configuration Experiment
  • 10.2. Exotic Containers
  • 10.2.1. Circular Tubes with Unusual Properties
  • 10.2.2. Adjustment of Container Shape
  • 10.2.3. Integration of Container Shape
  • 10.2.4. Mismatch of Volume and/or Contact Angle
  • 10.2.5. Residual Gravity
  • 10.2.6. Drop Tower Tests
  • References
  • 11. Liquid Penetration into Tubes and Wedges
  • 11.1. About the Momentum, or Navier-Stokes, Equation
  • 11.2. Penetration into Capillaries
  • 11.2.1. Cylindrical Vessels
  • 11.2.2. Liquid Rise in Capillaries
  • 11.2.3. Liquid Penetration into Wedges
  • 11.2.4. Similarity Solutions for Long Times
  • 11.2.5. Numerical Solution
  • 11.3. Dynamics of Liquids in Edges and Corners
  • 11.3.1. The DYLCO Experimental Module
  • 11.3.2. Drop Towers Tests for DYLCO
  • 11.3.3. Conduct of the IML-2 Experiment
  • 11.3.4. Results of the DYLCO IML-2 Experiment
  • 11.4. The Geometric Friction Coefficient ¿
  • 11.4.1. Flow in Rectangular Tubes
  • 11.4.2. Flow in Parallelograms
  • References
  • 12. Oscillations of Liquid Columns
  • 12.1. Introduction
  • 12.2. Theory
  • 12.2.1. Infinite Liquid Columns
  • 12.2.2. The Free Fluid Surface
  • 12.2.3. Natural Frequencies
  • 12.2.4. Finite Liquid Columns
  • 12.2.5. Axially Damped Oscillations
  • 12.2.6. Symmetric and Antimetric Oscillations
  • 12.2.7. Resonance Detection and Flow Patterns
  • 12.3. Experiments
  • 12.3.1. Short Liquid Columns
  • 12.3.2. Plateau Simulation
  • 12.3.3. Automatic Resonance Detection
  • 12.3.4. The LICOR Runs
  • 12.4. Lateral Oscillations of Liquid Bridges
  • 12.4.1. Damped Harmonic Oscillations
  • 12.4.2. Periodic Lateral Deformations
  • 12.4.3. Coupled Damped Oscillations
  • References
  • 13. Microgravity Experiments in Sounding Rockets, Spacelab and EURECA
  • 13.1. TEXUS 1-39
  • 13.2. MAXUS 1-4
  • 13.3. MiniTEXUS 1-6
  • 13.4. MASER 1-8
  • 13.5. SPAR I-X
  • 13.6. TR-IA 1-7
  • 13.7. Skylab, May 1973
  • 13.8. Apollo-Soyuz Test Project (ASTP)
  • 13.9. Spacelab 1 (STS-9)
  • 13.10. Spacelab 3 (STS-51B)
  • 13.11. Spacelab D-1 (STS-61A)
  • 13.12. Spacelab D-2 (STS-55)
  • 13.13. IML-1 (STS-42)
  • 13.14. Spacelab J (STS-47)
  • 13.15. IML-2 (STS-65)
  • 13.16. EURECA
  • 13.17. MIR and FOTON
  • Bibliography
  • Subject Index