Capillary surfaces : shape-stability-dynamics, in particular under weightlessness /
Saved in:
Author / Creator: | Langbein, Dieter W., 1932- |
---|---|
Imprint: | Berlin ; New York : Springer, c2002. |
Language: | English |
Series: | Springer tracts in modern physics, 0081-3869 ; v. 178 Springer tracts in modern physics ; 178. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4745701 |
Table of Contents:
- Notation
- 1. Introduction
- 1.1. Space Missions
- 1.2. Interdisciplinary Stimuli
- 1.3. Problems of Fluid Physics
- 1.4. Zero Mass Acceleration or Weightlessness
- 1.5. Flight Selection and Simulation
- References
- 2. Interface Tension and Contact Angle
- 2.1. Molecular Attraction and Condensation
- 2.2. The Interface Tension
- 2.2.1. Theoretical Aspects
- 2.2.2. Experimental Methods
- 2.2.3. Qualitative Rules for the Interface Energy
- 2.3. The Static Contact Angle
- 2.4. The Dynamic Contact Angle
- 2.5. Merging of Drops and Bubbles
- 2.6. Adhesion Forces in Liquid Films
- References
- 3. Capillary Shape and Stability
- 3.1. Balance of Forces
- 3.2. Minimization of Energy
- 3.3. Analytical Solutions of the Capillary Equation
- 3.3.1. Rise of Liquid in a Tube
- 3.3.2. Spherical Surfaces
- 3.3.3. Rise of a Liquid in Contact with an Infinite Plane
- 3.4. Axisymmetric Surfaces
- 3.5. Container Shape and Wetting
- 3.6. Drops at Low Bond Numbers
- 3.7. Representations of the Capillary Equation
- 3.7.1. Cartesian Coordinates z(x,y)
- 3.7.2. Polar Coordinates r($, y> )
- 3.7.3. Cylindrical Coordinates r(ip, z)
- 3.7.4. Cylindrical Coordinates z(r, y> )
- 3.7.5. Axisymmetry
- References
- 4. Stability Criteria
- 4.1. Stability of Capillary Surfaces
- 4.2. Breakage of Cylindrical Surfaces
- 4.3. Second Variation of Energy
- 4.4. Normal Deformations of Liquid Zones
- 4.4.1. Instabilities of Periodic Surfaces
- 4.4.2. Normal Deformations of a Circular Cylinder
- 4.4.3. The Symmetric Instability of the Catenoid
- 4.5. Nonaxisymmetric Instabilities
- 4.5.1. Lateral Deformations of the Center Line
- 4.5.2. Liquid Rings
- 4.6. The Minimum-Volume Condition
- 4.7. Linear Stability Analysis
- References
- 5. Axisymmetric Liquid Columns at Rest and Under Rotation
- 5.1. Introduction
- 5.2. The Normal Deformations
- 5.2.1. The Symmetric Mode D{{2,0}}
- 5.2.2. The Antimetric Mode D{{1,0}}
- 5.2.3. The Lateral Instability D{{0,1}}
- 5.2.4. Stability of a Liquid Ring
- 5.3. Nearly Cylindrical Surfaces
- 5.3.1. Fourier Expansion of an Axisymmetric Surface
- 5.3.2. The Symmetric Instability D{{2, 0}}
- 5.3.3. The Antimetric Instability d{{1, 0}}
- 5.3.4. The Lateral Mode D{{0, 1}}
- 5.3.5. Nonzero Bond Number
- 5.4. Rotating Free Drops
- 5.4.1. Motivation
- 5.4.2. Shape of Rotating Drops
- 5.4.3. Stability
- 5.4.4. Conservation of Angular Momentum
- 5.4.5. Finite-Element Analysis
- References
- 6. Liquid Zones
- 6.1. Liquid Bridges Between Parallel Plates
- 6.1.1. Introduction
- 6.1.2. Branches of Solutions of the Capillary Equation
- 6.1.3. Properties of the Inflection Point
- 6.1.4. The Instability Due to the Bifurcation (Due to D{{1, 0}})
- 6.1.5. The Instability Due to the Minimum Volume (Due to D{{2, 0}})
- 6.1.6. Differing Contact Angles
- 6.1.7. Gravity
- 6.1.8. Key Points
- 6.2. Double Float Zones
- 6.2.1. Introduction
- 6.2.2. Unduloids and Nodoids
- 6.2.3. Branches of Solutions
- 6.2.4. Results of the Spacelab Experiments
- 6.2.5. The Stability Diagram
- 6.2.6. Key Points
- References
- 7. Canthotaxis/Wetting Barriers/Pinning Lines
- 7.1. Introduction
- 7.2. Straight Wetting Barriers
- 7.2.1. The Wetting Tile
- 7.2.2. The Wetting Stripe
- 7.2.3. The Wetting Cross
- 7.2.4. Circular Tubes
- 7.2.5. Large Liquid Volumes
- 7.3. Liquid Surfaces in Wedges
- 7.4. Taylor Expansions at Small Radü
- 7.4.1. Alternative Winding Functions
- 7.5. Liquid Surfaces in Square Cylinders, cos ¿ 1 + cos ¿ 2 =0
- 7.6. Towards Modeling Canthotaxis
- 7.6.1. Helicoid and Catenoid
- 7.6.2. Winding Rates
- 7.6.3. Winding Rate of Infinity
- 7.6.4. Circular Tube with Complementary Contact Angles
- References
- 8. Cylindrical Containers
- 8.1. Introduction
- 8.1.1. Fields of Application
- 8.1.2. Liquids in Edges
- 8.2. The Integral Theorem for Cylindrical Vessels
- 8.2.1. Application of Divergence Theorem
- 8.2.2. Minimization of Energy with Respect to Height
- 8.2.3. Evaluation of Wedge Contributions
- 8.3. Examples
- 8.3.1. Ice Cream Cone
- 8.3.2. Rhombic Cylinder
- 8.3.3. Regular Polygon
- 8.3.4. Liquid in a Rotating Wedge
- 8.3.5. No Wetting of Wedge
- 8.3.6. Liquid Volume Pressed into a Wedge
- 8.4. Stability of Convex Cylindrical Surfaces
- 8.4.1. Longitudinal Normal Deformations
- 8.4.2. Axially Periodic Meniscus Shapes
- 8.4.3. Adjustment to Fit Solid Edges
- 8.4.4. Volume and Energy
- 8.4.5. Rotating Wedges
- 8.5. The MAXUS Experiment DYLCO
- References
- 9. Liquid Surfaces in Polyhedral Containers
- 9.1. Spherical Surfaces at Edges and Corners
- 9.1.1. Nonwetting Drops
- 9.1.2. Drops in Planar Wedges
- 9.1.3. Drops in Spherical Wedges
- 9.1.4. Liquid Drops in a Tripod
- 9.1.5. Regular W-Pods
- 9.2. Transition Between the Corner and the Wedge
- 9.2.1. Liquid Volumes in Polyhedra
- 9.2.2. Exponential Piling-Up in Corners
- 9.2.3. Numerical Calculation of Corner Volume
- 9.2.4. Similarity of Corner Volumes
- 9.2.5. Finite Wedge Length
- 9.2.6. Accuracy of the Present Approach
- 9.2.7. Prospects
- References
- 10. Playing with Stability
- 10.1. Proboscides
- 10.1.1. Finite Rhombic Prisms
- 10.1.2. Canonical Proboscides
- 10.1.3. Interface Configuration Experiment
- 10.2. Exotic Containers
- 10.2.1. Circular Tubes with Unusual Properties
- 10.2.2. Adjustment of Container Shape
- 10.2.3. Integration of Container Shape
- 10.2.4. Mismatch of Volume and/or Contact Angle
- 10.2.5. Residual Gravity
- 10.2.6. Drop Tower Tests
- References
- 11. Liquid Penetration into Tubes and Wedges
- 11.1. About the Momentum, or Navier-Stokes, Equation
- 11.2. Penetration into Capillaries
- 11.2.1. Cylindrical Vessels
- 11.2.2. Liquid Rise in Capillaries
- 11.2.3. Liquid Penetration into Wedges
- 11.2.4. Similarity Solutions for Long Times
- 11.2.5. Numerical Solution
- 11.3. Dynamics of Liquids in Edges and Corners
- 11.3.1. The DYLCO Experimental Module
- 11.3.2. Drop Towers Tests for DYLCO
- 11.3.3. Conduct of the IML-2 Experiment
- 11.3.4. Results of the DYLCO IML-2 Experiment
- 11.4. The Geometric Friction Coefficient ¿
- 11.4.1. Flow in Rectangular Tubes
- 11.4.2. Flow in Parallelograms
- References
- 12. Oscillations of Liquid Columns
- 12.1. Introduction
- 12.2. Theory
- 12.2.1. Infinite Liquid Columns
- 12.2.2. The Free Fluid Surface
- 12.2.3. Natural Frequencies
- 12.2.4. Finite Liquid Columns
- 12.2.5. Axially Damped Oscillations
- 12.2.6. Symmetric and Antimetric Oscillations
- 12.2.7. Resonance Detection and Flow Patterns
- 12.3. Experiments
- 12.3.1. Short Liquid Columns
- 12.3.2. Plateau Simulation
- 12.3.3. Automatic Resonance Detection
- 12.3.4. The LICOR Runs
- 12.4. Lateral Oscillations of Liquid Bridges
- 12.4.1. Damped Harmonic Oscillations
- 12.4.2. Periodic Lateral Deformations
- 12.4.3. Coupled Damped Oscillations
- References
- 13. Microgravity Experiments in Sounding Rockets, Spacelab and EURECA
- 13.1. TEXUS 1-39
- 13.2. MAXUS 1-4
- 13.3. MiniTEXUS 1-6
- 13.4. MASER 1-8
- 13.5. SPAR I-X
- 13.6. TR-IA 1-7
- 13.7. Skylab, May 1973
- 13.8. Apollo-Soyuz Test Project (ASTP)
- 13.9. Spacelab 1 (STS-9)
- 13.10. Spacelab 3 (STS-51B)
- 13.11. Spacelab D-1 (STS-61A)
- 13.12. Spacelab D-2 (STS-55)
- 13.13. IML-1 (STS-42)
- 13.14. Spacelab J (STS-47)
- 13.15. IML-2 (STS-65)
- 13.16. EURECA
- 13.17. MIR and FOTON
- Bibliography
- Subject Index