Applied quantitative finance : theory and computational tools /
Saved in:
Author / Creator: | Härdle, Wolfgang. |
---|---|
Imprint: | Berlin ; New York : Springer, c2002. |
Description: | pxx, 401 p. : ill. ; 24 cm. |
Language: | English |
Subject: | |
Format: | E-Resource Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4753174 |
Table of Contents:
- Preface
- Contributors
- Frequently Used Notation
- I. Value at Risk
- 1. Approximating Value at Risk in Conditional Gaussian Models
- 1.1. Introduction
- 1.1.1. The Practical Need
- 1.1.2. Statistical Modeling for VaR
- 1.1.3. VaR Approximations
- 1.1.4. Pros and Cons of Delta-Gamma Approximations
- 1.2. General Properties of Delta-Gamma-Normal Models
- 1.3. Cornish-Fisher Approximations
- 1.3.1. Derivation
- 1.3.2. Properties
- 1.4. Fourier Inversion
- 1.4.1. Error Analysis
- 1.4.2. Tail Behavior
- 1.4.3. Inversion of the cdf minus the Gaussian Approximation
- 1.5. Variance Reduction Techniques in Monte-Carlo Simulation
- 1.5.1. Monte-Carlo Sampling Method
- 1.5.2. Partial Monte-Carlo with Importance Sampling
- 1.5.3. XploRe Examples
- 2. Applications of Copulas for the Calculation of Value-at-Risk
- 2.1. Copulas
- 2.1.1. Definition
- 2.1.2. Sklar's Theorem
- 2.1.3. Examples of Copulas
- 2.1.4. Further Important Properties of Copulas
- 2.2. Computing Value-at-Risk with Copulas
- 2.2.1. Selecting the Marginal Distributions
- 2.2.2. Selecting a Copula
- 2.2.3. Estimating the Copula Parameters
- 2.2.4. Generating Scenarios - Monte Carlo Value-at-Risk
- 2.3. Examples
- 2.4. Results
- 3. Quantification of Spread Risk by Means of Historical Simulation
- 3.1. Introduction
- 3.2. Risk Categories - a Definition of Terms
- 3.3. Descriptive Statistics of Yield Spread Time Series
- 3.3.1. Data Analysis with XploRe
- 3.3.2. Discussion of Results
- 3.4. Historical Simulation and Value at Risk
- 3.4.1. Risk Factor: Full Yield
- 3.4.2. Risk Factor: Benchmark
- 3.4.3. Risk Factor: Spread over Benchmark Yield
- 3.4.4. Conservative Approach
- 3.4.5. Simultaneous Simulation
- 3.5. Mark-to-Model Backtesting
- 3.6. VaR Estimation and Backtesting with XploRe
- 3.7. P-P Plots
- 3.8. Q-Q Plots
- 3.9. Discussion of Simulation Results
- 3.9.1. Risk Factor: Full Yield
- 3.9.2. Risk Factor: Benchmark
- 3.9.3. Risk Factor: Spread over Benchmark Yield
- 3.9.4. Conservative Approach
- 3.9.5. Simultaneous Simulation
- 3.10. XploRe for Internal Risk Models
- II. Credit Risk
- 4. Rating Migrations
- 4.1. Rating Transition Probabilities
- 4.1.1. From Credit Events to Migration Counts
- 4.1.2. Estimating Rating Transition Probabilities
- 4.1.3. Dependent Migrations
- 4.1.4. Computation and Quantlets
- 4.2. Analyzing the Time-Stability of Transition Probabilities
- 4.2.1. Aggregation over Periods
- 4.2.2. Are the Transition Probabilities Stationary?
- 4.2.3. Computation and Quantlets
- 4.2.4. Examples with Graphical Presentation
- 4.3. Multi-Period Transitions
- 4.3.1. Time Homogeneous Markov Chain
- 4.3.2. Bootstrapping Markov Chains
- 4.3.3. Computation and Quantlets
- 4.3.4. Rating Transitions of German Bank Borrowers
- 4.3.5. Portfolio Migration
- 5. Sensitivity analysis of credit portfolio models
- 5.1. Introduction
- 5.2. Construction of portfolio credit risk models
- 5.3. Dependence modelling
- 5.3.1. Factor modelling
- 5.3.2. Copula modelling
- 5.4. Simulations
- 5.4.1. Random sample generation
- 5.4.2. Portfolio results
- III. Implied Volatility
- 6. The Analysis of Implied Volatilities
- 6.1. Introduction
- 6.2. The Implied Volatility Surface
- 6.2.1. Calculating the Implied Volatility
- 6.2.2. Surface smoothing
- 6.3. Dynamic Analysis
- 6.3.1. Data description
- 6.3.2. PCA of ATM Implied Volatilities
- 6.3.3. Common PCA of the Implied Volatility Surface
- 7. How Precise Are Price Distributions Predicted by IBT?
- 7.1. Implied Binomial Trees
- 7.1.1. The Derman and Kani (D & K) algorithm
- 7.1.2. Compensation
- 7.1.3. Barle and Cakici (B & C) algorithm
- 7.2. A Simulation and a Comparison of the SPDs
- 7.2.1. Simulation using Derman and Kani algorithm
- 7.2.2. Simulation using Barle and Cakici algorithm
- 7.2.3. Comparison with Monte-Carlo Simulation
- 7.3. Example - Analysis of DAX data
- 8. Estimating State-Price Densities with Nonparametric Regression
- 8.1. Introduction
- 8.2. Extracting the SPD using Call-Options
- 8.2.1. Black-Scholes SPD
- 8.3. Semiparametric estimation of the SPD
- 8.3.1. Estimating the call pricing function
- 8.3.2. Further dimension reduction
- 8.3.3. Local Polynomial Estimation
- 8.4. An Example: Application to DAX data
- 8.4.1. Data
- 8.4.2. SPD, delta and gamma
- 8.4.3. Bootstrap confidence bands
- 8.4.4. Comparison to Implied Binomial Trees
- 9. Trading on Deviations of Implied and Historical Densities
- 9.1. Introduction
- 9.2. Estimation of the Option Implied SPD
- 9.2.1. Application to DAX Data
- 9.3. Estimation of the Historical SPD
- 9.3.1. The Estimation Method
- 9.3.2. Application to DAX Data
- 9.4. Comparison of Implied and Historical SPD
- 9.5. Skewness Trades
- 9.5.1. Performance
- 9.6. Kurtosis Trades
- 9.6.1. Performance
- 9.7. A Word of Caution
- IV. Econometrics
- 10. Multivariate Volatility Models
- 10.1. Introduction
- 10.1.1. Model specifications
- 10.1.2. Estimation of the BEKK-model
- 10.2. An empirical illustration
- 10.2.1. Data description
- 10.2.2. Estimating bivariate GARCH
- 10.2.3. Estimating the (co)variance processes
- 10.3. Forecasting exchange rate densities
- 11. Statistical Process Control
- 11.1. Control Charts
- 11.2. Chart characteristics
- 11.2.1. Average Run Length and Critical Values
- 11.2.2. Average Delay
- 11.2.3. Probability Mass and Cumulative Distribution Function
- 11.3. Comparison with existing methods
- 11.3.1. Two-sided EWMA and Lucas/Saccucci
- 11.3.2. Two-sided CUSUM and Crosier
- 11.4. Real data example - monitoring CAPM
- 12. An Empirical Likelihood Goodness-of-Fit Test for Diffusions
- 12.1. Introduction
- 12.2. Discrete Time Approximation of a Diffusion
- 12.3. Hypothesis Testing
- 12.4. Kernel Estimator
- 12.5. The Empirical Likelihood concept
- 12.5.1. Introduction into Empirical Likelihood
- 12.5.2. Empirical Likelihood for Time Series Data
- 12.6. Goodness-of-Fit Statistic
- 12.7. Goodness-of-Fit test
- 12.8. Application
- 12.9. Simulation Study and Illustration
- 12.10. Appendix
- 13. A simple state space model of house prices
- 13.1. Introduction
- 13.2. A Statistical Model of House Prices
- 13.2.1. The Price Function
- 13.2.2. State Space Form
- 13.3. Estimation with Kalman Filter Techniques
- 13.3.1. Kalman Filtering given all parameters
- 13.3.2. Filtering and state smoothing
- 13.3.3. Maximum likelihood estimation of the parameters
- 13.3.4. Diagnostic checking
- 13.4. The Data
- 13.5. Estimating and filtering in XploRe
- 13.5.1. Overview
- 13.5.2. Setting the system matrices
- 13.5.3. Kalman filter and maximized log likelihood
- 13.5.4. Diagnostic checking with standardized residuals
- 13.5.5. Calculating the Kalman smoother
- 13.6. Appendix
- 13.6.1. Procedure equivalence
- 13.6.2. Smoothed constant state variables
- 14. Long Memory Effects Trading Strategy
- 14.1. Introduction
- 14.2. Hurst and Rescaled Range Analysis
- 14.3. Stationary Long Memory Processes
- 14.3.1. Fractional Brownian Motion and Noise
- 14.4. Data Analysis
- 14.5. Trading the Negative Persistence
- 15. Locally time homogeneous time series modeling
- 15.1. Intervals of homogeneity
- 15.1.1. The adaptive estimator
- 15.1.2. A small simulation study
- 15.2. Estimating the coefficients of an exchange rate basket
- 15.2.1. The Thai Baht basket
- 15.2.2. Estimation results
- 15.3. Estimating the volatility of financial time series
- 15.3.1. The standard approach
- 15.3.2. The locally time homogeneous approach
- 15.3.3. Modeling volatility via power transformation
- 15.3.4. Adaptive estimation under local time-homogeneity
- 15.4. Technical appendix
- 16. Simulation based Option Pricing
- 16.1. Simulation techniques for option pricing
- 16.1.1. Introduction to simulation techniques
- 16.1.2. Pricing path independent European options on one underlying
- 16.1.3. Pricing path dependent European options on one underlying
- 16.1.4. Pricing options on multiple underlyings
- 16.2. Quasi Monte Carlo (QMC) techniques for option pricing
- 16.2.1. Introduction to Quasi Monte Carlo techniques
- 16.2.2. Error bounds
- 16.2.3. Construction of the Halton sequence
- 16.2.4. Experimental results
- 16.3. Pricing options with simulation techniques - a guideline
- 16.3.1. Construction of the payoff function
- 16.3.2. Integration of the payoff function in the simulation framework
- 16.3.3. Restrictions for the payoff functions
- 17. Nonparametric Estimators of GARCH Processes
- 17.1. Deconvolution density and regression estimates
- 17.2. Nonparametric ARMA Estimates
- 17.3. Nonparametric GARCH Estimates
- 18. Net Based Spreadsheets in Quantitative Finance
- 18.1. Introduction
- 18.2. Client/Server based Statistical Computing
- 18.3. Why Spreadsheets?
- 18.4. Using MD*ReX
- 18.5. Applications
- 18.5.1. Value at Risk Calculations with Copulas
- 18.5.2. Implied Volatility Measures
- Index