Nuclear fusion : half a century of magnetic confinement fusion research /

Saved in:
Bibliographic Details
Author / Creator:Braams, C. M. (Cornelis Marius), 1925-
Imprint:Bristol : IOP, c2002.
Description:xv, 327 p. : ill. ; 24 cm.
Language:English
Subject:
Format: E-Resource Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4755278
Hidden Bibliographic Details
Other authors / contributors:Stott, P. E. (Peter E.)
ISBN:0750307056
Notes:Includes bibliographic references (p. 270-297) and index.
Table of Contents:
  • Preface
  • Prologue
  • 1. The road to Geneva
  • 1.1. The scientific roots
  • 1.1.1. Fusion energy in stars
  • 1.1.2. Fusion reactions on Earth
  • 1.1.3. The origins of plasma physics
  • 1.2. In and out of secrecy
  • 1.2.1. Programmes taking shape
  • 1.2.2. Looking behind the curtain
  • 1.2.3. The road to travel
  • 2. Geneva 1958
  • 2.1. Fast linear pinches or Z-pinches
  • 2.2. Steady-state mirror confinement
  • 2.3. Pulsed mirrors and theta pinches
  • 2.4. Stellarators
  • 2.5. Toroidal pinches
  • 2.6. RF fields and other subjects
  • 2.7. Looking back at Geneva
  • 3. Open systems
  • 3.1. Simple mirror machines
  • 3.1.1. Mirror loss
  • 3.1.2. The quest for burnout
  • 3.1.3. MHD stability
  • 3.1.4. Velocity-space instabilities in mirror machines
  • 3.2. Tandem mirrors
  • 3.3. Z-pinch and plasma focus
  • 3.4. Theta pinches
  • 3.5. Unconventional schemes
  • 3.6. The status of open systems
  • 4. Pulsed toroidal systems and alternative lines
  • 4.1. High-beta stellarators
  • 4.2. Stabilized and reversed-field pinches
  • 4.3. Screw pinches
  • 4.4. Field-reversed configurations and spheromaks
  • 4.5. Internal-ring devices
  • 4.6. Unconventional toroidal schemes
  • 4.7. Status of alternative toroidal systems
  • 5. Stellarators versus tokamaks
  • 5.1. Stellarators: Bohm diffusion or not?
  • 5.2. Tokamaks: from Geneva to Novosibirsk
  • 5.3. Diagnosing the plasma
  • 5.4. Stellarators trailing tokamaks
  • 6. The dash to tokamaks
  • 6.1. The tokamak goes abroad
  • 6.2. Neutral beam heating
  • 6.3. Disruptions and density limits
  • 6.4. Sawteeth
  • 6.5. Passing through purgatory
  • 6.6. Hydrogen recycling and refuelling
  • 6.7. Divertors
  • 6.8. Neoclassical theory
  • 6.9. Empirical scalings
  • 7. The next generation
  • 7.1. New machines
  • 7.2. Radio-frequency heating
  • 7.3. Non-inductive current drive
  • 7.4. The switch to carbon
  • 7.5. Beta limits
  • 7.6. Confinement degradation
  • 7.7. The H-mode
  • 7.8. Attempts to understand confinement
  • 7.9. Transport codes
  • 8. The era of the big tokamaks
  • 8.1. Building the big tokamaks
  • 8.1.1. JET--the Joint European Torus
  • 8.1.2. TFTR--the Tokamak Fusion Test Reactor
  • 8.1.3. JT-60
  • 8.2. Operation and results
  • 8.2.1. Heating the big tokamaks
  • 8.2.2. Keeping clean
  • 8.2.3. Pushing to higher performance
  • 8.2.4. Real fusion power at last
  • 8.2.5. The end of the era
  • 8.3. Improving the tokamak
  • 8.3.1. Reactor-relevant divertor physics
  • 8.3.2. Advanced tokamak scenarios
  • 8.3.3. Spherical tokamaks
  • 8.4. Towards ignition
  • 9. Towards a fusion reactor
  • 9.1. First thoughts
  • 9.2. Second thoughts
  • 9.3. Pioneering studies
  • 9.4. Drawing fire
  • 9.5. Economic and social aspects of fusion
  • 9.6. Joining forces for the 'next step'
  • 9.7. ITER
  • 9.7.1. The ITER EDA design
  • 9.7.2. The physics basis
  • 9.7.3. Decision and indecision
  • 9.7.4. Back to the drawing board
  • 10. Epilogue
  • References
  • Symbols
  • Glossary
  • Index