Global environmental change : modelling and monitoring /

Saved in:
Bibliographic Details
Author / Creator:Kondratʹev, K. I͡A. (Kirill I͡Akovlevich)
Imprint:Berlin ; New York : Springer, c2002.
Description:xiv, 316 p. : ill., maps ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4778806
Hidden Bibliographic Details
Other authors / contributors:Krapivin, V. F. (Vladimir Fedorovich)
Phillips, Gary W., 1940-
ISBN:3540433732 (alk. paper)
Notes:Includes bibliographical references (p. [299]-312) and index.
Table of Contents:
  • Preface
  • Abbreviations
  • 1. Introduction
  • 1.1. Contemporary Stage of the Civilization Development
  • 1.2. Contemporary Global Ecodynamics
  • 1.3. Sustainable Development
  • 1.4. Conclusion. Unsolved Problems
  • 2. The Basic Principles of Global Ecoinformatics
  • 2.1. The Main Idea of Global Ecoinformatics
  • 2.2. The Technology of Geoinformation Monitoring
  • 2.3. Elements of the Evolutionary Computer Technology
  • 2.4. A New Type of Global Model
  • 2.5. Global Modeling and Theory of Complex Systems Survivability
  • 2.5.1. Basic Definitions
  • 2.5.2. Study of the Simple Survivability Model
  • 2.5.3. Methods for Determining Stable Strategies
  • 3. Mathematical Model for Global Ecological Investigations
  • 3.1. Conceptual Aspects of Global Ecological Investigations
  • 3.2. General Description ofthe Global Model
  • 3.3. Biogeochemical Cycles
  • 3.3.1. Carbon Unit
  • 3.3.2. Nitrogen Unit
  • 3.3.3. Sulfur Unit
  • 3.4. Units of Biogeocenotic, Hydrologic and Climatic Processes
  • 3.5. Other Units of the Nature/Society System Model
  • 3.5.1. World Ocean Bioproductivity Unit
  • 3.5.2. Demographic Unit
  • 3.6. Biocomplexity Index
  • 3.6.1. Biocomplexity Indicator
  • 3.6.2. The BSS Biocomplexity Model
  • 3.7. Algorithms for the Data Processing
  • 3.7.1. Data Reconstruction Using the Harmonic Functions
  • 3.7.2. Method for Parametrical Identification of the Environmental Objects
  • 3.7.3. Method ofDifferential Approximation
  • 3.7.4. Quasi-Linearization Method
  • 3.8. Experiments Using the Global Simulation Model
  • 3.8.1. Plant Cover Restoration
  • 3.8.2. Diversion of Siberian Rivers to Central Asia
  • 3.8.3. Forecast for a Regional-Level Ecosystem Dynamics
  • 3.8.4. Other Global Simulation Model Applications
  • 4. Modeling of Ocean Ecosystem Dynamics
  • 4.1. The World Ocean as a Complex Hierarchical System
  • 4.2. Common Principles for the Synthesis ofOcean Ecosystem Models
  • 4.3. Equations Describing the Ocean Ecosystem Dynamics
  • 4.4. Analysis of the Vertical Structure of the Ocean Ecosystem
  • 4.5. Mathematical Model of the Upwelling Ecosystem
  • 4.6. Probabilistic Model of the Interaction Between Ocean Ecosystem Components
  • 5. Application of a Global Model to the Study of Arctic Basin Pollution
  • 5.1. Introduction
  • 5.2. The Spatial Simulation Model of the Arctic Ecosystem Structure
  • 5.3. The Marine Biota Unit
  • 5.4. The Hydrological Unit
  • 5.5. The Pollution Unit
  • 5.6. Simulation Results
  • 5.6.1. The Assumptions
  • 5.6.2. The Dynamics ofArctic Basin Radionuclear Pollution
  • 5.6.3. The Dynamics ofArctic Basin Pollution by Heavy metals
  • 5.6.4. The Dynamics ofArctic Basin Pollution by Oil Hydrocarbons
  • 5.6.5. The Dynamics ofthe Pollutants in the Arctic Basin
  • 5.7. Summary and Conclusion
  • 6. Estimation of the Peruvian Current Ecosystem
  • 6.1. Introduction
  • 6.2. Block Diagram and Principal Equations of the Peruvian Current Ecosystem (PCE) Model
  • 6.3. Experiments That Use the Model ofthe PCE
  • 6.3.1. Temperature Variations
  • 6.3.2. Variations ofIllumination
  • 6.3.3. The Effect ofWater Saturation with Oxygen
  • 6.3.4. The Effect of Varying the Concentration of Nutrients
  • 6.3.5. The Effect of Variations in the Velocity of Vertical Advection
  • 6.3.6. The PCE Sensitivity with Respect to Variation in the Model Parameters
  • 6.3.7. Investigation of PCE Survivability Under Variations in the Trophic Graph
  • 7. A New Technology for Monitoring Environment in the Okhotsk Sea
  • 7.1. Introduction
  • 7.2. Block Diagram and Principal Structure of the Simulation Model of the Okhotsk Sea Ecosystem
  • 7.3. The Marine Biota Unit
  • 7.4. The Hydrological Unit
  • 7.5. The Simulation Procedure and Experiments That Use the Simulation Model of the Okhotsk Sea Ecosystem
  • 7.6. Biocomplexity Criteria and the Evaluation of the Okhotsk Sea Ecosystem
  • 7.7. Concluding Remarks
  • 8. Pollutants Dynamics in the Angara-Yenisey River System (AYRS)
  • 8.1. Introduction
  • 8.2. An AYRS Simulation Model (AYRSSM)
  • 8.3. On-Site Measurements
  • 8.3.1. Radionuclides in River Sediments
  • 8.3.2. Heavy Metals in River Sediments
  • 8.4. Experiments Using the AYRSSM
  • 8.5. Concluding Remarks
  • 9. Realization of the GIMS-Technology for the Study of the Aral-Caspian Aquageosystem
  • 9.1. The Nature of the Problem
  • 9.2. Remote Monitoring Database
  • 9.3. Theory-Information Model of the Aral-Caspian Aquageosystem
  • 9.4. Simulation System for the Study of the Hydrological Fields of the Aral Sea
  • 9.5. Simulation Model of the Kara-Bogaz-Gol Gulf Water Regime
  • 9.6. Simulation Experiments
  • 9.7. Summary and Recommendations
  • 10. Monitoring of the Seas in the Oil and Gas Extraction Zones
  • 10.1. The Problem of Collection and Processing of Data in Monitoring Systems Operating in Zones of Oil and Gas Extraction
  • 10.2. Concept of a System of Ecological Monitoring of the Sea Surface and the Atmosphere in Zones of Oil and Gas Extraction
  • 10.3. Estimation of Oil Hydrocarbon Pollution Parameters in Seawater
  • 10.4. Expert System for the Identification of Pollutant Spills on the Water Surface
  • 10.5. Monitoring of the Gas Extraction Zone in the South China Sea
  • 11. Decision-Making Procedures in Environmental Monitoring Systems
  • 11.1. The Problem ofStatistical Decision-Making and Basic Definitions
  • 11.1.1. Correlation Between Classic and Sequential Decision-Making Procedures
  • 11.1.2. Distribution ofthe Sequential Analysis and Its Universality
  • 11.1.3. Scheme of the Decision-Making Procedure Using Sequential Analysis
  • 11.2. Parametrical Estimations for Sequential Analysis
  • 11.3. An Algorithm for Multichannel Data Processing in the Decision-Making Task
  • 11.3.1. Organizational Scheme ofthe Statistical Analyzer Operation
  • 11.3.2. Error Probability Assessment ofthe System and the Requisite Delay Memory Capacity with Constant Expectation Time
  • 11.3.3. Evaluation of the System Error Probability and the Requisite Memory Capacity Delay with a Constant Number of Computer Storage Registers
  • 11.4. Applications of the Sequential Decision-Making Procedure
  • References
  • Index