Noncontact atomic force microscopy /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2002.
Description:xviii, 439 p. : ill. ; 25 cm.
Language:English
Series:Nanoscience and technology, 1434-4904
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4797924
Hidden Bibliographic Details
Other authors / contributors:Morita, S. (Seizo), 1948-
Wiesendanger, R. (Roland), 1961-
Meyer, E. (Ernst) 1962-
ISBN:3540431179 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Introduction
  • 1.1. AFM in Retrospective
  • 1.2. Present Status of NC-AFM
  • 1.3. Future Prospects for NC-AFM
  • References
  • 2. Principle of NC-AFM
  • 2.1. Basics
  • 2.1.1. Relation to the Scanning Tunneling Microscope (STM)
  • 2.1.2. Atomic Force Microscope (AFM)
  • 2.1.3. Operating Modes of AFMs
  • 2.1.4. Scanning Speed, Signal Bandwidth and Noise
  • 2.2. The Four Additional Challenges Faced by AFM
  • 2.2.1. Jump-to-Contact and Other Instabilities
  • 2.2.2. Contribution of Long-Range Forces
  • 2.2.3. Noisein theImagingSignal
  • 2.2.4. Non-MonotonicImaging Signal
  • 2.3. Frequency-Modulation AFM (FM-AFM)
  • 2.3.1. Experimental Setup
  • 2.3.2. Applications
  • 2.4. Relation between Frequency Shift and Forces
  • 2.4.1. Generic Calculation
  • 2.4.2. Frequency Shift for a Typical Tip-Sample Force
  • 2.4.3. Calculation of the Tunneling Current for Oscillating Tips
  • 2.5. Noise in Frequency-Modulation AFM
  • 2.5.1. Generic Calculation
  • 2.5.2. Noisein theFrequencyMeasurement
  • 2.5.3. Optimal Amplitude for Minimal Vertical Noise
  • 2.6. A Novel Force Sensor Based on a Quartz Tuning Fork
  • 2.6.1. Quartz Versus Silicon as a Cantilever Material
  • 2.6.2. Benefits in Clamping One of the Beams (qPlus Configuration)
  • 2.7. Conclusion and Outlook
  • References
  • 3. Semiconductor Surfaces
  • 3.1. Instrumentation
  • 3.2. Three-Dimensional Mapping of Atomic Force
  • 3.3. Control ofAtomic Force
  • 3.4. Imaging Mechanisms for Si(100)2×1 and Si(100)2×1: H
  • 3.5. Surface Strain on an Atomic Scale
  • 3.6. Low Temperature Image of Si(100) Clean Surface
  • 3.7. Mechanical Control ofAtomPosition
  • 3.8. Atom Identification Using Covalent Bonding Force
  • 3.9. Charge Imaging with Atomic Resolution
  • 3.10. Mechanical Atom Manipulation
  • References
  • 4. Bias Dependence of NC-AFM Images and TunnelingCurrent Variations on Semiconductor Surfaces
  • 4.1. Experimental Conditions
  • 4.2. Bias Dependence of NC-AFM Images for Si(111)7×7
  • 4.2.1. MechanismofInvertedAtomicCorrugation
  • 4.2.2. NC-AFM Imaging and Tunneling Current
  • 4.3. NC-AFM Images for Ge/Si(111)
  • 4.4. Concluding Remarks
  • References
  • 5. Alkali Halides
  • 5.1. Introduction
  • 5.1.1. Experimental Techniques
  • 5.1.2. Relevant Forces
  • 5.2. Imaging of Single Crystals
  • 5.2.1. Sample Preparation
  • 5.2.2. Atomic Corrugation
  • 5.2.3. Imaging of Defects
  • 5.2.4. Mixed Alkali Halide Crystals
  • 5.3. Imaging of Thin Films
  • 5.3.1. Preparation of Thin Films
  • 5.3.2. Atomic Resolutionat Low-Coordinated Sites
  • 5.4. Radiation Damage
  • 5.4.1. Metallization and Bubble Formation in CaF 2
  • 5.4.2. Monatomic Pits in KBr
  • 5.5. Dissipation Measurements
  • 5.5.1. Material and Site-Specific Contrast
  • 5.5.2. Using Damping for Distance Control
  • References
  • 6. Atomic Resolution Imaging on Fluorides
  • 6.1. Experimental Techniques
  • 6.2. Tip Instabilities
  • 6.3. Flat Surfaces
  • 6.4. Step Edges
  • References
  • 7. Atomically Resolved Imaging of a NiO(001) Surface
  • 7.1. Antiferromagnetic Nickel Oxide
  • 7.2. ExperimentalConsiderations
  • 7.3. Morphology ofthe Cleaved Surface
  • 7.4. Atomically Resolved Imaging UsingNon-CoatedandFe-CoatedSiTips
  • 7.5. Short-Range Magnetic Interaction
  • 7.6. Analysis ofthe Cross-Section
  • 7.7. Conclusion
  • References
  • 8. Atomic Structure, Order and Disorder on High Temperature Reconstructed ¿-Al 2 O 3 (0001)
  • 8.1. TheCleanSurface
  • 8.2. Defect Formation upon Water Exposure
  • 8.3. Self-Organized Formation of Nanoclusters
  • References
  • 9. NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides
  • 9.1. Introduction
  • 9.2. 1×1 to 1×3 Phase Transition of TiO 2 (100)
  • 9.3. Surface Reconstructions of TiO 2 (110)
  • 9.4. The 1×2 Reconstruction of SnO 2 (110)
  • 9.5. Imaging Thin Film Alumina: NiAl(110)-Al 2 O 3
  • 9.6. Growth of Cu and Pd on ¿-Al 2 O 3 (0001)-
  • 9.7. A Short-Range-Ordered Overlayer of K on TiO 2 (110)
  • 9.8. Conclusions
  • References
  • 10. Atoms and Molecules on TiO 2 (110) and CeO 2 (111) Surfaces
  • 10.1. Background
  • 10.2. Brief Description of Experiments
  • 10.3. Surface Structures of TiO 2 (110)
  • 10.4. Adsorbed Atoms and Molecules on TiO 2 (110)
  • 10.4.1. Carboxylate Ions on TiO 2 (110)
  • 10.4.2. Hydrogen Adatoms on TiO 2 (110)
  • 10.5. Fluctuation ofAcetate Ions on TiO 2 (110)
  • 10.6. Surface Structures of CeO 2 (111)
  • 10.7. Conclusions
  • References
  • 11. NC-AFM Imaging of Adsorbed Molecules
  • 11.1. NucleicAcidBasesonaGraphiteSurface
  • 11.2. Double-StrandedDNAonaMicaSurface
  • 11.3. Alkanethiol on a Au(111) Surface
  • References
  • 12. Organic Molecular Films
  • 12.1. AFM Imaging of Molecular Films
  • 12.1.1. Fullerenes
  • 12.1.2. AlkanethiolSAMs
  • 12.1.3. Ferroelectric Molecular Films
  • 12.2. Surface Potential Measurements
  • 12.3. Technical Developments in NC-AFM Imaging ofMolecules
  • 12.4. Concluding Remarks
  • References
  • 13. Single-Molecule Analysis
  • 13.1. Introduction
  • 13.2. Molecules and Surface
  • 13.3. Experimental Methods
  • 13.4. Alkyl-Substituted Carboxylates
  • 13.5. Numerical Simulation ofPropiolate Topography
  • 13.5.1. Sphere-Substrate Force
  • 13.5.2. Sphere-Carboxylate Force
  • 13.5.3. Cluster-Substrate Force
  • 13.5.4. Cluster-Carboxylate Force
  • 13.5.5. Simulated Topography
  • 13.6. Fluorine-Substituted Acetates
  • 13.7. Conclusions and Perspectives
  • References
  • 14. Low-Temperature Measurements: Principles, Instrumentation, and Application
  • 14.1. Introduction
  • 14.2. Microscope Operation at Low Temperatures
  • 14.2.1. Drift
  • 14.2.2. Noise
  • 14.3. Instrumentation
  • 14.4. Van der Waals Surfaces
  • 14.4.1. HOPG(0001)
  • 14.4.2. Xenon
  • 14.5. Nickel Oxide
  • 14.6. Semiconductors
  • 14.6.1. ¿f(z) Curves on Specific Atomic Sites
  • 14.6.2. Tip-Dependent Atomic Scale Contrast
  • 14.6.3. Tip-Induced Relaxation
  • 14.7. Magnetic Force Microscopy at Low Temperatures
  • 14.7.1. MFM Data Acquisition
  • 14.7.2. Domain Structure of La 0.7 Ca 0.3 MnO 3-¿
  • 14.7.3. Vortices on YBa 2 Cu 3 O 7-¿
  • 14.8. Conclusions
  • References
  • 15. Theory of Non-Contact Atomic Force Microscopy
  • 15.1. Introduction
  • 15.2. Cantilever Dynamics
  • 15.3. Theoretical Simulation of NC-AFM Images
  • 15.4. Non-Contact Atomic Force Microscopy Images ofDynamic Surfaces
  • 15.5. Effect of Tip on Image for the Si(100)2×1: H Surface
  • 15.6. Effect of Tip on Surface Structure Change and its Relation to Dissipation
  • 15.7. Conclusion and Outlook
  • References
  • 16. Chemical Interaction in NC-AFM on Semiconductor Surfaces
  • 16.1. Introduction
  • 16.2. First-Principles Calculation of Tip-Surface Chemical Interaction
  • 16.3. Simulation of NC-AFM Images
  • 16.4. Simulations on Various Surfaces
  • 16.5. Tip-Induced Surface Relaxation on the GaAs(110) Surface
  • 16.5.1. Vertical Scan Over an As Atom
  • 16.5.2. Vertical Scan Over a Ga Atom
  • 16.5.3. RelevancetoNear-Contact STM Observations
  • 16.5.4. Tip-Induced Surface Atomic Processes and EnergyDissipation in NC-AFM
  • 16.6. Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence
  • 16.7. Effect of Tip Morphology on NC-AFM Images
  • 16.7.1. Image Contrast for the Ga/Si Tip
  • 16.7.2. Image Contrast for the As/Si Tip
  • 16.8. Conclusion
  • References
  • 17. Contrast Mechanisms on InsulatingSurfaces
  • 17.1. Introduction
  • 17.2. Model ofAFM and Main Forces
  • 17.2.1. Tip-Surface Setup
  • 17.2.2. Forces
  • 17.3. Simulating Scanning
  • 17.3.1. TheSurface
  • 17.3.2. TheTip
  • 17.3.3. Tip-Surface Interaction
  • 17.3.4. Modelling Oscillations
  • 17.3.5. Generating a Theoretical Surface Image
  • 17.4. Applications
  • 17.4.1. The Calcium Fluoride (111) Surface
  • 17.4.2. Calcite: Surface Deformations During Scanning
  • 17.5. Studying Surface and Defect Properties
  • 17.6. Conclusions
  • References
  • 18. Analysis of Microscopy and Spectroscopy Experiments
  • 18.1. Introduction
  • 18.2. BasicPrinciples
  • 18.2.1. Experimental Setup
  • 18.2.2. Origin ofthe Frequency Shift
  • 18.2.3. Calculation ofthe FrequencyShift
  • 18.2.4. Frequency Shift for Conservative Tip-Sample Forces
  • 18.3. Simulation of NC-AFM Images
  • 18.3.1. Experimental NC-AFM Images of van der Waals Surfaces 355
  • 18.3.2. BasicPrinciplesoftheSimulationMethod
  • 18.3.3. Applications ofthe Simulation Method
  • 18.4. Dynamic Force Spectroscopy
  • 18.4.1. Determining Forces fromFrequencies
  • 18.4.2. Analysis ofTip-Sample Interaction Forces
  • 18.5. Conclusion
  • References
  • 19. Theory of Energy Dissipation into Surface Vibrations
  • 19.1. Introduction
  • 19.2. Possible Dissipation Mechanisms
  • 19.2.1. Adhesion Hysteresis
  • 19.2.2. Stochastic Dissipation
  • 19.2.3. Other Mechanisms
  • 19.3. Brownian Particle MechanismofEnergy Dissipation
  • 19.3.1. Brownian Particle
  • 19.3.2. Fluctuation-Dissipation Theorem
  • 19.3.3. Oscillating Tip as a Brownian Particle
  • 19.3.4. Energy Dissipated Per Oscillation Cycle
  • 19.4. Nonequilibrium Considerations for NC-AFM Systems
  • 19.4.1. Preliminary Remarks
  • 19.4.2. Mixed Quantum-Classical Representation
  • 19.4.3. Equation ofMotion for the Tip
  • 19.5. Estimation ofDissipation Energies in NC-AFM
  • 19.6. Comparison with STM
  • 19.7. Conclusions and Future Directions
  • References
  • 20. Measurement of Dissipation Induced by Tip-Sample Interactions
  • 20.1. Introduction
  • 20.2. Experimental Aspects of Energy Dissipation
  • 20.3. ExperimentalMethods
  • 20.4. ApparentEnergyDissipation
  • 20.5. Velocity-DependentDissipation
  • 20.5.1. Electric-Field-MediatedJouleDissipation
  • 20.5.2. Magnetic-Field-MediatedJouleDissipation
  • 20.5.3. Magnetic-Field-MediatedDissipation
  • 20.5.4. Brownian Dissipation
  • 20.6. Hysteresis-Related Dissipation
  • 20.6.1. Magnetic-Field-Induced Hysteresis
  • 20.6.2. Hysteresis Due to Adhesion
  • 20.6.3. Hysteresis Due to Atomic Instabilities
  • 20.7. DissipationImagingwithAtomicResolution
  • 20.8. DissipationSpectroscopy
  • 20.9. Conclusion
  • References
  • Index