Noncontact atomic force microscopy /
Saved in:
Imprint: | Berlin ; New York : Springer, c2002. |
---|---|
Description: | xviii, 439 p. : ill. ; 25 cm. |
Language: | English |
Series: | Nanoscience and technology, 1434-4904 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4797924 |
Table of Contents:
- 1. Introduction
- 1.1. AFM in Retrospective
- 1.2. Present Status of NC-AFM
- 1.3. Future Prospects for NC-AFM
- References
- 2. Principle of NC-AFM
- 2.1. Basics
- 2.1.1. Relation to the Scanning Tunneling Microscope (STM)
- 2.1.2. Atomic Force Microscope (AFM)
- 2.1.3. Operating Modes of AFMs
- 2.1.4. Scanning Speed, Signal Bandwidth and Noise
- 2.2. The Four Additional Challenges Faced by AFM
- 2.2.1. Jump-to-Contact and Other Instabilities
- 2.2.2. Contribution of Long-Range Forces
- 2.2.3. Noisein theImagingSignal
- 2.2.4. Non-MonotonicImaging Signal
- 2.3. Frequency-Modulation AFM (FM-AFM)
- 2.3.1. Experimental Setup
- 2.3.2. Applications
- 2.4. Relation between Frequency Shift and Forces
- 2.4.1. Generic Calculation
- 2.4.2. Frequency Shift for a Typical Tip-Sample Force
- 2.4.3. Calculation of the Tunneling Current for Oscillating Tips
- 2.5. Noise in Frequency-Modulation AFM
- 2.5.1. Generic Calculation
- 2.5.2. Noisein theFrequencyMeasurement
- 2.5.3. Optimal Amplitude for Minimal Vertical Noise
- 2.6. A Novel Force Sensor Based on a Quartz Tuning Fork
- 2.6.1. Quartz Versus Silicon as a Cantilever Material
- 2.6.2. Benefits in Clamping One of the Beams (qPlus Configuration)
- 2.7. Conclusion and Outlook
- References
- 3. Semiconductor Surfaces
- 3.1. Instrumentation
- 3.2. Three-Dimensional Mapping of Atomic Force
- 3.3. Control ofAtomic Force
- 3.4. Imaging Mechanisms for Si(100)2×1 and Si(100)2×1: H
- 3.5. Surface Strain on an Atomic Scale
- 3.6. Low Temperature Image of Si(100) Clean Surface
- 3.7. Mechanical Control ofAtomPosition
- 3.8. Atom Identification Using Covalent Bonding Force
- 3.9. Charge Imaging with Atomic Resolution
- 3.10. Mechanical Atom Manipulation
- References
- 4. Bias Dependence of NC-AFM Images and TunnelingCurrent Variations on Semiconductor Surfaces
- 4.1. Experimental Conditions
- 4.2. Bias Dependence of NC-AFM Images for Si(111)7×7
- 4.2.1. MechanismofInvertedAtomicCorrugation
- 4.2.2. NC-AFM Imaging and Tunneling Current
- 4.3. NC-AFM Images for Ge/Si(111)
- 4.4. Concluding Remarks
- References
- 5. Alkali Halides
- 5.1. Introduction
- 5.1.1. Experimental Techniques
- 5.1.2. Relevant Forces
- 5.2. Imaging of Single Crystals
- 5.2.1. Sample Preparation
- 5.2.2. Atomic Corrugation
- 5.2.3. Imaging of Defects
- 5.2.4. Mixed Alkali Halide Crystals
- 5.3. Imaging of Thin Films
- 5.3.1. Preparation of Thin Films
- 5.3.2. Atomic Resolutionat Low-Coordinated Sites
- 5.4. Radiation Damage
- 5.4.1. Metallization and Bubble Formation in CaF 2
- 5.4.2. Monatomic Pits in KBr
- 5.5. Dissipation Measurements
- 5.5.1. Material and Site-Specific Contrast
- 5.5.2. Using Damping for Distance Control
- References
- 6. Atomic Resolution Imaging on Fluorides
- 6.1. Experimental Techniques
- 6.2. Tip Instabilities
- 6.3. Flat Surfaces
- 6.4. Step Edges
- References
- 7. Atomically Resolved Imaging of a NiO(001) Surface
- 7.1. Antiferromagnetic Nickel Oxide
- 7.2. ExperimentalConsiderations
- 7.3. Morphology ofthe Cleaved Surface
- 7.4. Atomically Resolved Imaging UsingNon-CoatedandFe-CoatedSiTips
- 7.5. Short-Range Magnetic Interaction
- 7.6. Analysis ofthe Cross-Section
- 7.7. Conclusion
- References
- 8. Atomic Structure, Order and Disorder on High Temperature Reconstructed ¿-Al 2 O 3 (0001)
- 8.1. TheCleanSurface
- 8.2. Defect Formation upon Water Exposure
- 8.3. Self-Organized Formation of Nanoclusters
- References
- 9. NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides
- 9.1. Introduction
- 9.2. 1×1 to 1×3 Phase Transition of TiO 2 (100)
- 9.3. Surface Reconstructions of TiO 2 (110)
- 9.4. The 1×2 Reconstruction of SnO 2 (110)
- 9.5. Imaging Thin Film Alumina: NiAl(110)-Al 2 O 3
- 9.6. Growth of Cu and Pd on ¿-Al 2 O 3 (0001)-
- 9.7. A Short-Range-Ordered Overlayer of K on TiO 2 (110)
- 9.8. Conclusions
- References
- 10. Atoms and Molecules on TiO 2 (110) and CeO 2 (111) Surfaces
- 10.1. Background
- 10.2. Brief Description of Experiments
- 10.3. Surface Structures of TiO 2 (110)
- 10.4. Adsorbed Atoms and Molecules on TiO 2 (110)
- 10.4.1. Carboxylate Ions on TiO 2 (110)
- 10.4.2. Hydrogen Adatoms on TiO 2 (110)
- 10.5. Fluctuation ofAcetate Ions on TiO 2 (110)
- 10.6. Surface Structures of CeO 2 (111)
- 10.7. Conclusions
- References
- 11. NC-AFM Imaging of Adsorbed Molecules
- 11.1. NucleicAcidBasesonaGraphiteSurface
- 11.2. Double-StrandedDNAonaMicaSurface
- 11.3. Alkanethiol on a Au(111) Surface
- References
- 12. Organic Molecular Films
- 12.1. AFM Imaging of Molecular Films
- 12.1.1. Fullerenes
- 12.1.2. AlkanethiolSAMs
- 12.1.3. Ferroelectric Molecular Films
- 12.2. Surface Potential Measurements
- 12.3. Technical Developments in NC-AFM Imaging ofMolecules
- 12.4. Concluding Remarks
- References
- 13. Single-Molecule Analysis
- 13.1. Introduction
- 13.2. Molecules and Surface
- 13.3. Experimental Methods
- 13.4. Alkyl-Substituted Carboxylates
- 13.5. Numerical Simulation ofPropiolate Topography
- 13.5.1. Sphere-Substrate Force
- 13.5.2. Sphere-Carboxylate Force
- 13.5.3. Cluster-Substrate Force
- 13.5.4. Cluster-Carboxylate Force
- 13.5.5. Simulated Topography
- 13.6. Fluorine-Substituted Acetates
- 13.7. Conclusions and Perspectives
- References
- 14. Low-Temperature Measurements: Principles, Instrumentation, and Application
- 14.1. Introduction
- 14.2. Microscope Operation at Low Temperatures
- 14.2.1. Drift
- 14.2.2. Noise
- 14.3. Instrumentation
- 14.4. Van der Waals Surfaces
- 14.4.1. HOPG(0001)
- 14.4.2. Xenon
- 14.5. Nickel Oxide
- 14.6. Semiconductors
- 14.6.1. ¿f(z) Curves on Specific Atomic Sites
- 14.6.2. Tip-Dependent Atomic Scale Contrast
- 14.6.3. Tip-Induced Relaxation
- 14.7. Magnetic Force Microscopy at Low Temperatures
- 14.7.1. MFM Data Acquisition
- 14.7.2. Domain Structure of La 0.7 Ca 0.3 MnO 3-¿
- 14.7.3. Vortices on YBa 2 Cu 3 O 7-¿
- 14.8. Conclusions
- References
- 15. Theory of Non-Contact Atomic Force Microscopy
- 15.1. Introduction
- 15.2. Cantilever Dynamics
- 15.3. Theoretical Simulation of NC-AFM Images
- 15.4. Non-Contact Atomic Force Microscopy Images ofDynamic Surfaces
- 15.5. Effect of Tip on Image for the Si(100)2×1: H Surface
- 15.6. Effect of Tip on Surface Structure Change and its Relation to Dissipation
- 15.7. Conclusion and Outlook
- References
- 16. Chemical Interaction in NC-AFM on Semiconductor Surfaces
- 16.1. Introduction
- 16.2. First-Principles Calculation of Tip-Surface Chemical Interaction
- 16.3. Simulation of NC-AFM Images
- 16.4. Simulations on Various Surfaces
- 16.5. Tip-Induced Surface Relaxation on the GaAs(110) Surface
- 16.5.1. Vertical Scan Over an As Atom
- 16.5.2. Vertical Scan Over a Ga Atom
- 16.5.3. RelevancetoNear-Contact STM Observations
- 16.5.4. Tip-Induced Surface Atomic Processes and EnergyDissipation in NC-AFM
- 16.6. Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence
- 16.7. Effect of Tip Morphology on NC-AFM Images
- 16.7.1. Image Contrast for the Ga/Si Tip
- 16.7.2. Image Contrast for the As/Si Tip
- 16.8. Conclusion
- References
- 17. Contrast Mechanisms on InsulatingSurfaces
- 17.1. Introduction
- 17.2. Model ofAFM and Main Forces
- 17.2.1. Tip-Surface Setup
- 17.2.2. Forces
- 17.3. Simulating Scanning
- 17.3.1. TheSurface
- 17.3.2. TheTip
- 17.3.3. Tip-Surface Interaction
- 17.3.4. Modelling Oscillations
- 17.3.5. Generating a Theoretical Surface Image
- 17.4. Applications
- 17.4.1. The Calcium Fluoride (111) Surface
- 17.4.2. Calcite: Surface Deformations During Scanning
- 17.5. Studying Surface and Defect Properties
- 17.6. Conclusions
- References
- 18. Analysis of Microscopy and Spectroscopy Experiments
- 18.1. Introduction
- 18.2. BasicPrinciples
- 18.2.1. Experimental Setup
- 18.2.2. Origin ofthe Frequency Shift
- 18.2.3. Calculation ofthe FrequencyShift
- 18.2.4. Frequency Shift for Conservative Tip-Sample Forces
- 18.3. Simulation of NC-AFM Images
- 18.3.1. Experimental NC-AFM Images of van der Waals Surfaces 355
- 18.3.2. BasicPrinciplesoftheSimulationMethod
- 18.3.3. Applications ofthe Simulation Method
- 18.4. Dynamic Force Spectroscopy
- 18.4.1. Determining Forces fromFrequencies
- 18.4.2. Analysis ofTip-Sample Interaction Forces
- 18.5. Conclusion
- References
- 19. Theory of Energy Dissipation into Surface Vibrations
- 19.1. Introduction
- 19.2. Possible Dissipation Mechanisms
- 19.2.1. Adhesion Hysteresis
- 19.2.2. Stochastic Dissipation
- 19.2.3. Other Mechanisms
- 19.3. Brownian Particle MechanismofEnergy Dissipation
- 19.3.1. Brownian Particle
- 19.3.2. Fluctuation-Dissipation Theorem
- 19.3.3. Oscillating Tip as a Brownian Particle
- 19.3.4. Energy Dissipated Per Oscillation Cycle
- 19.4. Nonequilibrium Considerations for NC-AFM Systems
- 19.4.1. Preliminary Remarks
- 19.4.2. Mixed Quantum-Classical Representation
- 19.4.3. Equation ofMotion for the Tip
- 19.5. Estimation ofDissipation Energies in NC-AFM
- 19.6. Comparison with STM
- 19.7. Conclusions and Future Directions
- References
- 20. Measurement of Dissipation Induced by Tip-Sample Interactions
- 20.1. Introduction
- 20.2. Experimental Aspects of Energy Dissipation
- 20.3. ExperimentalMethods
- 20.4. ApparentEnergyDissipation
- 20.5. Velocity-DependentDissipation
- 20.5.1. Electric-Field-MediatedJouleDissipation
- 20.5.2. Magnetic-Field-MediatedJouleDissipation
- 20.5.3. Magnetic-Field-MediatedDissipation
- 20.5.4. Brownian Dissipation
- 20.6. Hysteresis-Related Dissipation
- 20.6.1. Magnetic-Field-Induced Hysteresis
- 20.6.2. Hysteresis Due to Adhesion
- 20.6.3. Hysteresis Due to Atomic Instabilities
- 20.7. DissipationImagingwithAtomicResolution
- 20.8. DissipationSpectroscopy
- 20.9. Conclusion
- References
- Index