Near-infrared spectroscopy : principles, instruments, applications /
Saved in:
Imprint: | Weinheim : Wiley-VCH, c2002. |
---|---|
Description: | xiii, 348 p. : ill. ; 25 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4809203 |
Table of Contents:
- Foreword
- List of Contributors
- 1. Introduction
- 1.1. General Remarks
- 1.2. Basic Principles of Vibrational Spectroscopy
- 1.3. Instrumentation
- 1.4. Process-Monitoring
- 1.5. References
- 2. Origin of Near-Infrared Absorption Bands
- 2.1. Introduction
- 2.2. Principles of Near-Infrared Spectroscopy
- 2.2.1. The Diatomic Molecule
- 2.2.1.1. The Harmonic Oscillator
- 2.2.1.2. Anharmonic Oscillator
- 2.2.2. The Polyatomic Molecule
- 2.2.2.1. Harmonic Approximation
- 2.2.2.2. Influence of Anharmonicity
- 2.2.2.3. Degenerate Vibrations
- 2.2.2.4. Symmetry Considerations
- 2.2.2.5. Fermi and Darling-Denisson Resonances
- 2.3. Chemical Assignments of NIR Bands
- 2.3.1. Group Frequencies
- 2.3.1.1. C-H Absorptions
- 2.3.1.2. O-H Absorptions
- 2.3.1.3. N-H Absorptions
- 2.3.2. Deuteration
- 2.3.3. Polarisation Measurements
- 2.3.4. Two-Dimensional Correlation Spectroscopy
- 2.4. Conclusion
- 2.5. References
- 3. Instrumentation for Near-Infrared Spectroscopy
- 3.1. Configuration of Near-Infrared Spectrometers
- 3.2. Interference-Filter Spectroscopy
- 3.2.1. Principle of Interference-Filter Spectroscopy
- 3.2.2. Wavelength Scanning
- 3.3. Diffraction-Grating Spectroscopy
- 3.3.1. Principle of Diffraction-Grating Spectroscopy
- 3.3.2. Wavelength Scanning for Grating Spectroscopy
- 3.3.3. Multichannel Spectroscopy with a Polychromator
- 3.3.4. Production Methods of Reflection-Type Diffraction Gratings
- 3.4. Spectroscopy with Acousto-Optical Diffraction Gratings
- 3.4.1. Schematics of Acousto-Optical Diffraction Gratings
- 3.4.2. Characteristics of Spectroscopy by Bragg Diffraction
- 3.4.3. Application and Materials of Acousto-Optical Elements
- 3.5. Fourier-Transform Spectroscopy
- 3.5.1. Principle of Fourier-Transform Spectroscopy
- 3.5.2. Characteristics of Fourier-Transform Spectroscopy
- 3.5.2.1. Optical Throughput Advantage
- 3.5.2.2. Multiplexing Advantage
- 3.5.2.3. Resolution
- 3.5.3. Various Types of Michelson Interferometer
- 3.5.4. Polarisation Interferometer
- 3.5.5. FT-NIR Raman Spectroscopy
- 3.6. Multichannel Fourier-Transform Spectroscopy
- 3.6.1. Principle of Multichannel Fourier-Transform Spectroscopy
- 3.6.2. Multichannel Fourier-Transform Spectroscopy with a Polarising Interferometer with a Savart Plate
- 3.7. Comparison of Spectrometers
- 3.8. References
- 4. New Techniques in Near-Infrared Spectroscopy
- 4.1. Near-Infrared Light Sources
- 4.1.1. Thermal Radiation
- 4.1.1.1. Tungsten Halogen Lamp
- 4.1.1.2. Nichrome Heater and Globar
- 4.1.2. Laser and Light Emitting Diode
- 4.1.2.1. Light Emitting Diode and Semiconductor Laser
- 4.1.2.2. Other Lasers
- 4.2. Near-Infrared Detectors
- 4.2.1. Photoconduction Effect
- 4.2.2. The Photovoltaic Effect
- 4.2.3. Multi-Channel Detectors
- 4.3. Optical Elements for the Near-Infrared Region
- 4.4. References
- 5. Near-Infrared FT-Raman Spectroscopy
- 5.1. Introduction
- 5.2. Principles of FT-Raman Spectrometry
- 5.2.1. Raman Scattering
- 5.2.2. FT-Raman Measurement
- 5.2.3. Apodisation Function and Line Shape
- 5.2.4. Resolution
- 5.2.5. Sampling Frequency
- 5.2.6. Intensity Calibration
- 5.3. Instrumentation
- 5.4. Applications
- 5.4.1. Various Materials
- 5.4.2. Double Modulation Measurements
- 5.4.3. Pulsed Excitation--Synchronous Sampling
- 5.4.4. Pulsed Excitation--Asynchronous Sampling
- 5.4.5. Time-Resolved Measurements
- 5.5. Conclusion
- 5.6. References
- 6. Sampling and Sample Presentation
- 6.1. Sampling
- 6.2. Sample Preparation
- 6.2.1. Grinding
- 6.2.2. Slicing or Cutting
- 6.2.3. Shredding and Juicing
- 6.2.4. Homogenising
- 6.2.5. Temperature Control
- 6.2.6. Moisture Control
- 6.3. Sample Presentation
- 6.3.1. Relative Absorbance
- 6.3.2. Transmission, Reflection, Transflection and Interaction
- 6.3.3. Sample Cell or Sample Holder
- 6.3.3.1. Sample Cell for Whole Grains
- 6.3.3.2. Sample Cell for a Powdered Sample
- 6.3.3.3. Sample Cell for Pastes
- 6.3.3.4. Sample Cell for Liquids
- 6.3.3.5. Fruit Holder
- 6.3.3.6. Sample Holder for Single Kernels
- 6.3.3.7. Fibre Optics
- 6.4. References
- 7. Fundamental Chemometric Methods
- 7.1. Introduction
- 7.2. Quantitative Analysis
- 7.2.1. Beer's Law, a Simple Physical Model
- 7.2.2. A Full Spectrum Method: CLS
- 7.2.3. Inverse Multivariate Calibrations
- 7.2.4. Wavelength Selection for Multivariate Calibrations
- 7.3. Qualitative Analysis
- 7.4. Signal Processing
- 7.4.1. Why Data Pretreatment?
- 7.4.2. Techniques and Algorithms
- 7.4.2.1. Local Filters
- 7.4.2.2. Smoothing
- 7.4.2.3. Derivatives
- 7.4.2.4. Baseline Correction Methods
- 7.4.2.5. Multiplicative Corrections
- 7.4.2.6. Orthogonal Signal Correction (OSC)
- 7.4.2.7. Instrument Standardisation and Calibration Transfer
- 7.5. New Developments
- 7.5.1. Artificial Neural Networks
- 7.5.2. Genetic Algorithms
- 7.6. References
- 8. Two-Dimensional Near-Infrared Correlation Spectroscopy
- 8.1. Introduction
- 8.2. Generalised Two-Dimensional NIR Correlation Spectroscopy
- 8.2.1. Background
- 8.2.2. Mathematical Treatment
- 8.2.3. Properties of Generalised Two-Dimensional Correlation Spectra
- 8.3. Two-Dimensional NIR Correlation Spectroscopy Proposed by Barton et al.
- 8.4. Sample-Sample Correlation Spectroscopy
- 8.4.1. Sample-Sample Correlation Spectroscopy
- 8.5. References
- 9. Applications in Chemistry
- 9.1. Introduction
- 9.2. NIR Studies of Hydrogen Bonds, Hydration and Self-Association of Basic Compounds
- 9.2.1. Water
- 9.2.2. Fatty Acids
- 9.2.3. Alcohols
- 9.2.4. Proteins
- 9.3. Chemometrics Approach to Basic Chemical Problems
- 9.3.1. Determination of the Physical and Chemical Properties of Water
- 9.3.2. Discrimination of 24 Kinds of Alcohols by PCA
- 9.3.3. Resolution Enhancement of NIR Spectra by Loadings Plots
- 9.4. References
- 10. Applications to Polymers and Textiles
- 10.1. Introduction
- 10.2. Selected Analytical Applications
- 10.3. Specific Features of NIR Spectroscopy
- 10.4. Polymer Optical Fibres
- 10.5. Fundamental Polymer Research by NIR Spectroscop
- 10.5.1. The Study of Diffusion of Alcohols and Water in Polyamide 11 [21]
- 10.5.2. Rheo-optical FT-NIR Spectroscopy of Poly(Dimethylsiloxane)/Polycarbonate Block Copolymers
- 10.6. References
- 11. Application to Industrial Process Control
- 11.1. Introduction
- 11.2. Advantages of NIR-Spectroscopic Process Analysers
- 11.3. Instrumentation for NIR-Spectroscopic Process Analysers
- 11.4. Applications
- 11.5. References
- 12. Application to Agricultural Products and Foodstuffs
- 12.1. Introduction
- 12.2. Grains and Seeds
- 12.3. Fruits and Vegetables
- 12.4. Livestock Products
- 12.5. Marine Products
- 12.6. Beverages
- 12.7. Other Processed Food
- 12.8. References
- 13. Applications of Near-Infrared Spectroscopy in Medical Sciences
- 13.1. Introduction
- 13.2. Applications in Clinical Chemistry
- 13.2.1. Measurement Techniques and Chemometrics
- 13.2.2. Biofluid Assays
- 13.3. Near-Infrared Spectroscopy of Tissues
- 13.3.1. General Pathology Studies
- 13.3.2. Near-Infrared Spectroscopic Analyses of Skin
- 13.3.3. Noninvasive Metabolite Monitoring
- 13.4. Short-Wave Near-Infrared Spectroscopy for Medical Monitoring
- 13.4.1. Noninvasive Pulsatile Near-IR Spectroscopy
- 13.4.2. Monitoring of Blood-Tissue Oxygenation and Cytochrome Redox Status
- 13.4.3. Near-Infrared Tomography
- 13.5. Concluding Remarks
- 13.6. References
- Appendix
- References
- Subject Index