Astronomical image and data analysis /
Saved in:
Author / Creator: | Starck, J.-L. (Jean-Luc), 1965- |
---|---|
Imprint: | Berlin ; New York : Springer, c2002. |
Description: | xi, 289 p. : ill. (some col.) ; 24 cm. |
Language: | English |
Series: | Astronomy and astrophysics library, 0941-7834 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4810712 |
Table of Contents:
- 1. Introduction to Applications and Methods
- 1.1. Introduction
- 1.2. Transformation and Data Representation
- 1.2.1. Fourier Analysis
- 1.2.2. Time-Frequency Representation
- 1.2.3. Time-Scale Representation: The Wavelet Transform
- 1.2.4. The Radon Transform
- 1.3. Mathematical Morphology
- 1.4. Edge Detection
- 1.4.1. First Order Derivative Edge Detection
- 1.4.2. Second Order Derivative Edge Detection
- 1.5. Segmentation
- 1.6. Pattern Recognition
- 1.7. Summary
- 2. Filtering
- 2.1. Introduction
- 2.2. Multiscale Transforms
- 2.2.1. The à Trous Isotropic Wavelet Transform
- 2.2.2. Multiscale Transforms Compared to Other Data Transforms
- 2.2.3. Choice of Multiscale Transform
- 2.2.4. The Multiresolution Support
- 2.3. Significant Wavelet Coefficients
- 2.3.1. Definition
- 2.3.2. Noise Modeling
- 2.3.3. Automatic Estimation of Gaussian Noise
- 2.4. Filtering and Wavelet Coefficient Thresholding
- 2.4.1. Thresholding
- 2.4.2. Iterative Filtering
- 2.4.3. Experiments
- 2.4.4. Iterative Filtering with a Smoothness Constraint
- 2.5. Haar Wavelet Transform and Poisson Noise
- 2.5.1. Haar Wavelet Transform
- 2.5.2. Poisson Noise and Haar Wavelet Coefficients
- 2.5.3. Experiments
- 2.6. Summary
- 3. Deconvolution
- 3.1. Introduction
- 3.2. The Deconvolution Problem
- 3.3. Linear Regularized Methods
- 3.3.1. Least Squares Solution
- 3.3.2. Tikhonov Regularization
- 3.3.3. Generalization
- 3.4. CLEAN
- 3.5. Bayesian Methodology
- 3.5.1. Definition
- 3.5.2. Maximum Likelihood with GaussianNoise
- 3.5.3. Gaussian Bayes Model
- 3.5.4. Maximum Likelihood with Poisson Noise
- 3.5.5. Poisson Bayes Model
- 3.5.6. Maximum Entropy Method
- 3.5.7. Other Regularization Models
- 3.6. Iterative Regularized Methods
- 3.6.1. Constraints
- 3.6.2. Jansson-Van Cittert Method
- 3.6.3. Other Iterative Methods
- 3.7. Wavelet-Based Deconvolution
- 3.7.1. Introduction
- 3.7.2. Wavelet-Vaguelette Decomposition
- 3.7.3. Regularization from the Multiresolution Support
- 3.7.4. Wavelet CLEAN
- 3.7.5. Multiscale Entropy
- 3.8. Deconvolution and Resolution
- 3.9. Super-Resolution
- 3.9.1. Definition
- 3.9.2. Gerchberg-Saxon-Papoulis Method
- 3.9.3. Deconvolution with Interpolation
- 3.9.4. Undersampled Point Spread Function
- 3.9.5. Multiscale Support Constraint
- 3.10. Conclusions and Summary
- 4. Detection
- 4.1. Introduction
- 4.2. From Images to Catalogs
- 4.3. Multiscale Vision Model
- 4.3.1. Introduction
- 4.3.2. Multiscale Vision Model Definition
- 4.3.3. From Wavelet Coefficients to Object Identification
- 4.3.4. Partial Reconstruction
- 4.3.5. Examples
- 4.3.6. Application to ISOCAM Data Calibration
- 4.4. Detection and Deconvolution
- 4.5. Conclusion
- 4.6. Summary
- 5. Image Compression
- 5.1. Introduction
- 5.2. Lossy Image Compression Methods
- 5.2.1. The Principle
- 5.2.2. Compression with Pyramidal Median Transform
- 5.2.3. PMT and Image Compression
- 5.2.4. Compression Packages
- 5.2.5. Remarks on These Methods
- 5.3. Comparison
- 5.3.1. Quality Assessment
- 5.3.2. Visual Quality
- 5.3.3. First Aladin Project Study
- 5.3.4. Second Aladin Project Study
- 5.3.5. Computation Time
- 5.3.6. Conclusion
- 5.4. Loss less Image Compression
- 5.4.1. Introduction
- 5.4.2. The Lifting Scheme
- 5.4.3. Comparison
- 5.5. Large Images: Compression and Visualization
- 5.5.1. Large Image Visualization Environment: LIVE
- 5.5.2. Decompression by Scale and by Region
- 5.5.3. TheSAO-DS9 LIVE Implementation
- 5.6. Summary
- 6. Multichannel Data
- 6.1. Introduction
- 6.2. The Wavelet-Karhunen-Loeve Transform
- 6.2.1. Definition
- 6.2.2. Correlation Matrix and Noise Modeling
- 6.2.3. Scale and Karhunen-Loaeve Transform
- 6.2.4. The WT-KLT Transform
- 6.2.5. TheWT-KLT Reconstruction Algorithm
- 6.3. Noise Modeling in the WT-KLT Space
- 6.4. Multichannel Data Filtering
- 6.4.1. Introduction
- 6.4.2. Reconstruction from a Subset of Eigenvectors
- 6.4.3. WT-KLT Coefficient Thresholding
- 6.4.4. Example: Astronomical Source Detection
- 6.5. The Haar-Multichannel Transform
- 6.6. Independent Component Analysis
- 6.7. Summary
- 7. An Entropic Tour of Astronomical Data Analysis
- 7.1. Introduction
- 7.2. The Concept of Entropy
- 7.3. Multiscale Entropy
- 7.3.1. Definition
- 7.3.2. Signal and Noise Information
- 7.4. Multiscale Entropy Filtering
- 7.4.1. Filtering
- 7.4.2. The Regularization Parameter
- 7.4.3. Use of a Model
- 7.4.4. The Multiscale Entropy Filtering Algorithm
- 7.4.5. Optimization
- 7.4.6. Examples
- 7.5. Deconvolution
- 7.5.1. The Principle
- 7.5.2. The Parameters
- 7.5.3. Examples
- 7.6. Multichannel Data Filtering
- 7.7. Background Fluctuation Analysis
- 7.8. Relevant Information in an Image
- 7.9. Multiscale Entropy and Optimal Compressibility
- 7.10. Conclusions and Summary
- 8. Astronomical Catalog Analysis
- 8.1. Introduction
- 8.2. Two-Point Correlation Function
- 8.2.1. Introduction
- 8.2.2. Determiningthe2-PointCorrelationFunction
- 8.2.3. Error Analysis
- 8.2.4. Correlation Length Determination
- 8.2.5. Creation of Random Catalogs
- 8.2.6. Examples
- 8.3. Fractal Analysis
- 8.3.1. Introduction
- 8.3.2. The Hausdorff and Minkowski Measures
- 8.3.3. The Hausdorff and Minkowski Dimensions
- 8.3.4. Multifractality
- 8.3.5. Generalized Fractal Dimension
- 8.3.6. Wavelet and Multifractality
- 8.4. Spanning Trees and Graph Clustering
- 8.5. Voronoi Tessellation and Percolation
- 8.6. Model-Based Clustering
- 8.6.1. Modeling of Signal and Noise
- 8.6.2. Application to Thresholding
- 8.7. Wavelet Analysis
- 8.8. Nearest Neighbor Clutter Removal
- 8.9. Summary
- 9. Multiple Resolution in Data Storage and Retrieval
- 9.1. Introduction
- 9.2. Wavelets in Database Management
- 9.3. Fast Cluster Analysis
- 9.4. Nearest Neighbor Finding on Graphs
- 9.5. Cluster-Based User Interfaces
- 9.6. Images from Data
- 9.6.1. Matrix Sequencing
- 9.6.2. Filtering Hypertext
- 9.6.3. Clustering Document-TermData
- 9.7. Summary
- 10. Towards the Virtual Observatory
- 10.1. Data and Information
- 10.2. The Information Handling Challenges Facing Us
- Appendix A. à Trous Wavelet Transform
- Appendix B. Picard Iteration
- Appendix C. Wavelet Transform Using the Fourier Transform
- Appendix D. Derivative Needed for the Minimization
- Appendix E. Generalization of the Derivative Needed for the Minimization
- Appendix F. Software and Related Developments
- Bibliography
- Index