Semiconductor quantum dots : physics, spectroscopy, and applications /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2002.
Description:xx, 486 p. : ill. ; 25 cm.
Language:English
Series:Nanoscience and technology
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4818594
Hidden Bibliographic Details
Other authors / contributors:Masumoto, Y. (Yasuaki), 1948-
Takagahara, T. (Toshihide), 1950-
ISBN:3540428054 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Growth of Self-Organized Quantum Dots
  • 1.1. Introduction
  • 1.2. Fabrication Techniques of Quantum Dots
  • 1.2.1. Quantum Dot Fabrication by Lithographic Techniques
  • 1.2.2. Self-Organized Quantum Dot Fabrication
  • 1.3. Ordering of Three-Dimensional Islands
  • 1.3.1. Structural Characterization of Quantum Dots
  • 1.3.2. Ordering of Quantum Dot Position
  • 1.4. Real-Time Monitoring of Self-Organized Quantum Dot Formation
  • 1.4.1. Reflection High-Energy Electron Diffraction in Molecular Beam Epitaxy
  • 1.4.2. Optical in situ Measurement in Metal-Organic Vapor-Phase Epitaxy
  • References
  • 2. Excitonic Structures and Optical Properties of Quantum Dots
  • 2.1. Introduction
  • 2.2. Quantum and Dielectric Confinement Effect
  • 2.3. Nonlocal Response Theory of Radiative Decay Rate of Excitons in Quantum Dots: Size Dependence and Temperature Dependence
  • 2.3.1. Formulation
  • 2.3.2. Size Dependence of Excitonic Radiative Decay Rate
  • 2.3.3. Effect of Homogeneous Broadening on Excitonic Radiative Decay Rate
  • 2.4. Electron-Hole Exchange Interaction in Degenerate Valence Band Structures
  • 2.4.1. Formulation
  • 2.4.2. Exciton Doublet Structures
  • 2.4.3. Polarization Characteristics of Exciton Doublets
  • 2.5. Enhancement of Excitonic Optical Nonlinearity in Quantum Dot Arrays
  • 2.5.1. Exciton Band Structure in Quantum Dot Arrays
  • 2.5.2. Excitonic Optical Nonlinearity of Quantum Dot Arrays
  • 2.5.3. Tolerance Limits for the Fluctuation of Structure Parameters of the Quantum Dot Array
  • 2.5.4. The Polariton Effect and Photonic Band Structures
  • 2.6. Summary
  • Appendix A. Expression of Depolarization Field
  • Appendix B. Depolarization Field in the Presence of a Background Dielectric Constant
  • Appendix C. Vector Spherical Harmonics
  • Appendix D. Parameter Related to the Electron-Hole Exchange Energies
  • References
  • 3. Electron-Phonon Interactions in Semiconductor Quantum Dots
  • 3.1. Introduction
  • 3.2. Energy Spectra of Acoustic Phonon Modes in Spherical Nanocrystals
  • 3.2.1. The Case of the Stress-Free Boundary Condition
  • 3.2.2. The Case of Smooth Contact Between a Quantum Dot and the Surrounding Medium
  • 3.3. Derivation of the Electron-Acoustic-Phonon Interactions
  • 3.4. Derivation of Electron-Polar-Optical-Phonon Interaction in Quantum Dots
  • 3.5. A Formal Theory on the Exciton-Phonon System Within the Franck-Condon Approximation
  • 3.6. Luminescence Stokes Shift and Huang-Rhys Factor
  • 3.7. Summary
  • Appendix A. Strain Tensor Components in General Orthogonal Curvilinear Coordinates
  • Appendix B. Vector Spherical Harmonics
  • References
  • 4. Micro-Imaging and Single Dot Spectroscopyof Self-Assembled Quantum Dots
  • 4.1. Introduction
  • 4.2. How to Get Access to a Single Quantum Dot
  • 4.3. Observation Energy Dependence and Optical Anisotropy
  • 4.3.1. Mechanism for Optical Anisotropy
  • 4.3.2. Optical Anisotropy of Individual Quantum Dots
  • 4.4. Many Carrier Effects
  • 4.4.1. State Filling Effects Studied by Micro-Imaging
  • 4.4.2. Multiexciton States
  • 4.4.3. Biexciton Binding Energy
  • 4.5. Temperature Dependence
  • 4.5.1. Band Gap Energy Shift
  • 4.5.2. Thermal Activation
  • 4.5.3. Study of Thermal Activation by Micro-Photoluminescence Images
  • 4.6. Fluorescence Intermittency
  • 4.6.1. Micro-Photoluminescence Images of Blinking Dots
  • 4.6.2. Random Telegraph Signals in Various Systems
  • 4.6.3. Random or Correlated?
  • 4.6.4. Excitation Power Dependence
  • 4.6.5. Origin of Fluorescence Intermittency in Inp Self-Assembled Dots
  • 4.6.6. Experimental Verification of the Model187
  • 4.7. Some Other Interesting Phenomena
  • 4.7.1. External Electric Field Effects
  • 4.7.2. Magnetic Micro-Photoluminescence Spectra
  • 4.7.3. Fine Splitting by Anisotropic Strain
  • 4.7.4. Time Domain and Nonlinear Measurements
  • 4.8. Summary
  • References
  • 5. Persistent Spectral Hole Burning in Semiconductor Quantum Dots
  • 5.1. Introduction
  • 5.2. Precursor and Discovery of the Persistent Spectral Hole-Burning Phenomenon
  • 5.3. Persistent Spectral Hole Burning, Hole Filling, and Their Mechanism
  • 5.4. Luminescence Hole Burning and Charged Exciton Complexes
  • 5.5. Photostimulated Luminescence, Luminescence Blinking, and Spectral Diffusion
  • 5.6. Application of Persistent Spectral Hole Burning to Site-Selective Spectroscopy
  • 5.7. Summary
  • References
  • 6. Dynamics of Carrier Relaxation in Self-Assembled Quantum Dots
  • 6.1. Introduction
  • 6.2. Experimental Details
  • 6.3. Photoluminescence Spectra in External Electric Field
  • 6.4. Physical Mechanisms
  • 6.4.1. Model of Selective Photoluminescence Quenching
  • 6.5. Kinetics
  • 6.6. Acoustic Phonon Resonances
  • 6.7. Auger-Like Processes
  • 6.8. Conclusion
  • References
  • 7. Resonant Two-Photon Spectroscopy of Quantum Dots
  • 7.1. Introduction
  • 7.2. Electronic Structure of Cds(Se) Quantum Dots
  • 7.2.1. Two-Photon Absorption Techniques
  • 7.2.2. The Line-Narrowing Technique
  • 7.2.3. Analysis of RHRS and RSHS Excitation Spectra
  • 7.3. Energy Structure of Low-Energy Confined Excitons in CuCl Quantum Dots
  • 7.4. Exciton-Phonon Interaction in CuBr and CuCl Quantum Dots
  • 7.4.1. CuBr Quantum Dots: Coupled Exciton-LO-Phonon States
  • 7.4.2. CuCl Quantum Dots: Size Dependence of the Exciton-LO-Phonon Interaction
  • 7.4.3. CuCl Quantum Dots: Softening of LO Phonons in the Presence of an Exciton
  • 7.5. Determination of the Orientation of CuCl Nanocrystals in a NaCl Matrix
  • 7.6. Single Nanocrystal Luminescence by Two-Photon Excitation
  • 7.7. Conclusion
  • References
  • 8. Homogeneous Width of Confined Excitons in Quantum Dots -Experimental
  • 8.1. Introduction
  • 8.2. Spectral Hole Burning and Fluorescence Line Narrowing
  • 8.3. Single Quantum Dot Spectroscopy
  • 8.4. Photon Echo
  • 8.5. Accumulated Photon Echo
  • 8.5.1. Accumulated Photon Echo and Persistent Hole Burning
  • 8.5.2. Phase-Modulation Technique of the Accumulated Photon Echo -Application to Quantum Dots
  • 8.5.3. Accumulated Photon Echo Signal and the Homogeneous Width of CuCl Quantum Dots
  • 8.5.4. Accumulated Photon Echo Signal and the Homogeneous Width of CdSe Quantum Dots
  • 8.5.5. Lowest-Temperature Accumulated Photon Echo Signal and Homogeneous Width
  • 8.5.6. Summary of the Accumulated Photon Echo of Quantum Dots
  • 8.6. Coherency Measurements
  • References
  • 9. Theory of Exciton Dephasing in Semiconductor Quantum Dots
  • 9.1. Introduction
  • 9.2. Green Function Formalism of Exciton Dephasing Rate
  • 9.3. Exciton-Phonon Interactions
  • 9.4. Excitons in Anisotropic Quantum Disks
  • 9.5. Temperature-Dependence of the Exciton Dephasing Rate
  • 9.6. Elementary Processes of Exciton Pure Dephasing
  • 9.7. Mechanisms of Population Decay of Excitons
  • 9.7.1. Phonon-Assisted Population Relaxation
  • 9.7.2. Phonon-Assisted Exciton Migration
  • 9.8. Correlation Between Temperature Dependence of Exciton Dephasing Rate and Strength of Quantum Confinement
  • 9.9. Polarization Relaxation of Excitons
  • 9.10. Photoluminescence Spectrum under Selective Excitation
  • 9.11. Summary and Discussion
  • References
  • 10. Excitonic Optical Nonlinearity and Weakly Correlated Exciton-Pair States
  • 10.1. Introduction
  • 10.2. Exciton States
  • 10.2.1. Formulation
  • 10.2.2. Configuration Interaction in a Truncated Basis
  • 10.2.3. Variational Approach
  • 10.2.4. Kayanuma's Correlated Basis Set
  • 10.3. Biexciton States
  • 10.3.1. Variational Approach
  • 10.3.2. Exciton-Exciton Product State Basis
  • 10.3.3. Electron-Hole Exchange Interaction
  • 10.4. Exciton and Biexciton Energy Levels: The Case of Cucl
  • 10.5. Transition Dipole Moments
  • 10.5.1. Formulation
  • 10.5.2. Results for Cucl
  • 10.6. Weakly Correlated Exciton Pair States
  • 10.7. Nonlinear Optical Properties
  • 10.7.1. Size Dependence of the Third-Order Nonlinear Susceptibility
  • 10.7.2. Excited State Absorption from the Exciton Ground State
  • 10.7.3. Experimental Observation of the Weakly Correlated Exciton Pair States
  • 10.7.4. Recent Progress in Nonlinear Nano-Optics
  • 10.8. Summary and Conclusions
  • Appendix A. Two-Particle States with L = 1, 2
  • Appendix B. Electron-Hole Exchange Interaction
  • References
  • 11. Coulomb Effects in the Optical Spectra of Highly Excited Semiconductor Quantum Dots
  • 11.1. Introduction
  • 11.2. Local Density Approximation for Electrons and Holes
  • 11.3. Application of the Local Density Approximation to Quantum Dots
  • 11.3.1. Spherical Approximation
  • 11.3.2. Cylindrical Quantum Dots
  • 11.4. Beyond the Local Density Approximation: Spectral Broadening and Relaxation by Coulomb Scattering
  • 11.5. Spin Fine Structure of a Few Exciton Spectra: the Configuration Interaction Approach
  • 11.6. Conclusions
  • References
  • 12. Device Applications of Quantum Dots
  • 12.1. Improvements of Characteristics in Quantum Dot Devices
  • 12.1.1. Thermal Broadening in Bulk and Quantum Well Semiconductors
  • 12.1.2. Density of States in Quantum Nanostructures
  • 12.1.3. Other Characteristic Changes of Quantum Dots for Device Applications
  • 12.1.4. Required Quantum Dots Dimensions for Device Applications
  • 12.1.5. Required Characteristics for Quantum Dot Optical Devices
  • 12.1.6. Advantages of Self-Assembled Quantum Dots
  • 12.2. Optical Devices with Quantum Dots
  • 12.2.1. Quantum Dot Lasers with Improved Temperature Characteristics
  • 12.2.2. Lasing Wavelength Control in Quantum Dot Lasers
  • 12.2.3. Reduction of Threshold Current Density in Quantum Dot Lasers
  • 12.2.4. Vertical-Cavity Surface-Emitting Lasers with Quantum Dots
  • 12.2.5. Miscellaneous Improvements in Quantum Dot Lasers
  • 12.2.6. Other Optical Devices
  • 12.3. Future of Quantum Dot Devices
  • 12.3.1. Ideal Quantum Dot Structures for Device Applications
  • 12.3.2. Ultimate Device Performances with Quantum Dots
  • References
  • Index481