High-resolution imaging and spectrometry of materials /
Saved in:
Imprint: | Berlin ; New York : Springer, c2003. |
---|---|
Description: | xiv, 440 p. : ill. ; 24 cm. |
Language: | English |
Series: | Springer series in materials science, 0933-033X ; 50 Springer series in materials science ; v. 50. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4840334 |
Table of Contents:
- 1. Microcharacterisation of Materials
- References
- 2. Electron Scattering
- 2.1. Introduction
- 2.2. The Schrödinger Equation
- 2.3. The Scattering Amplitude
- 2.4. The Born Approximation
- 2.5. The Mutual Dynamic Object Spectrum
- 2.6. Mixed Dynamic Form-Factor
- 2.7. Coherence Function Approach
- 2.8. Generalized Multislice Method
- References
- 3. Structure Determination by Quantitative High-Resolution Electron Microscopy (Q-HRTEM)
- 3.1. Introduction
- 3.2. Strategies of Structure Retrieval
- 3.2.1. Simulation of Image Formation in HRTEM
- 3.2.2. Object Classes and Object-Image Relations in HRTEM
- 3.3. Strain and Pattern Mapping
- 3.3.1. Displacement Errors
- 3.3.2. Classification of Strain Mapping Techniques
- 3.3.3. Local Peak Detection
- 3.3.4. Integral Peak Detection
- 3.3.5. Geometric Phase Mapping
- 3.3.6. Comparison of Techniques and Postprocessing Steps
- 3.3.7. Pattern Mapping
- 3.3.8. Noise Filters with Structure-Determination Strategies
- 3.4. Iterative Digital Image Matching (IDIM)
- 3.4.1. Algorithms and Modules of Iterative Refinement
- 3.4.2. Applications in Interface and Dislocation Science
- 3.4.3. Probability Calculus and Precision Estimation
- 3.5. HRTEM-Based Structure Determination Techniques
- 3.5.1. Classification of Techniques
- 3.5.2. List of Techniques Not Covered in This Book
- 3.5.3. A Practical Guide
- 3.6. Conclusions and Outlook
- References
- 4. Quantitative Analytical Transmission Electron Microscopy
- 4.1. Introduction
- 4.2. Basics of Electron Energy-Loss Spectroscopy (EELS)
- 4.2.1. Inelastic Scattering Processes
- 4.2.2. Instrumentation: Dedicated Scanning and Energy-Filtering TEM
- 4.3. Investigation of Interfaces and Grain Boundaries
- 4.3.1. Experimental Techniques
- 4.3.2. Segregation at Grain Boundaries in Copper
- 4.3.3. Bonding at Metal-Ceramic Interfaces
- 4.4. Energy-Filtering Transmission Electron Microscopy
- 4.4.1. Basic Equations for Quantification
- 4.4.2. Elemental Distribution Images
- 4.4.3. Noise Statistics
- 4.4.4. Detection Limits
- 4.4.5. Resolution Limits
- 4.4.6. Preservation of Elastic Scattering Contrast
- 4.4.7. Relativistic Intensity Distribution
- 4.4.8. Quantitative Analysis of ESI Series
- 4.4.9. Analysis of Near-Edge Fine Structure
- 4.5. Quantitative Convergent Beam Electron Diffraction
- 4.5.1. Basic Principles of CBED
- 4.5.2. Determination of Bonding Charge Densities
- 4.5.3. Bonding Charge Density of NiAl
- References
- 5. Advances in Electron Optics
- 5.1. Fundamentals of Image Formation
- 5.1.1. Lippmann-Schwinger Equation
- 5.1.2. Kinematic Approximation
- 5.1.3. Phase Contrast
- 5.1.4. Diffractograms
- 5.2. Properties of Aplanatic Electron Lenses
- 5.2.1. Sine Condition
- 5.2.2. Axial Aberrations
- 5.2.3. Generalized Coma
- 5.3. Perturbation Formalism
- 5.3.1. Gaussian Optics
- 5.3.2. Path and Momentum Deviations
- 5.3.3. Iteration Algorithm
- 5.3.4. Symplectic Representation
- 5.3.5. Canonical Boundary Conditions
- 5.3.6. Systems with Special Symmetry
- 5.4. Systems with Threefold Symmetry
- 5.4.1. Paraxial Trajectories
- 5.4.2. Second-Order Path Deviation
- 5.4.3. Third-Order Aberrations
- 5.4.4. Outline of a Fifth-Order Double Anastigmat
- 5.5. W-Filter
- 5.5.1. Geometry of the W-Filter
- 5.5.2. Paraxial Trajectories
- 5.5.3. SCOFF Design
- 5.5.4. Second-Rank Aberrations
- 5.6. Conclusion
- References
- 6. Tomography by Atom Probe Field Ion Microscopy
- 6.1. Introduction
- 6.2. Experimental Technique
- 6.2.1. The Field Ion Microscope (FIM)
- 6.2.2. The Atom Probe (APFIM)
- 6.2.3. The Position-Sensitive Detectors (PSD)
- 6.3. Tomography
- 6.3.1. The Ion Trajectories
- 6.3.2. Image Projections
- 6.3.3. Tomographic Reconstruction
- 6.3.4. Data Analysis
- 6.3.5. Artefacts of the Reconstruction
- 6.4. Atom Probe Tomography in Materials Studies
- 6.4.1. Distribution of Solutes
- 6.4.2. Early Stages of Phase Formation
- 6.4.3. Segregation Phenomena
- References
- List of Standard Abbreviations
- List of Standard Abbreviations
- 7. Scanning Tunneling Microscopy (STM) and Spectroscopy (STS), Atomic Force Microscopy (AFM)
- 7.1. Introduction
- 7.2. Scanning Tunneling Microscopy (STM)
- 7.3. Scanning Tunneling Spectroscopy (STS)
- 7.4. Atomic Force Microscopy (AFM)
- 7.5. Special Techniques
- 7.5.1. Generalities
- 7.5.2. STM in Electrochemistry
- 7.6. Combination of STM with Other Techniques
- 7.6.1. STM and Low-Energy Electron Diffraction
- 7.6.2. STM and Surface X-ray Diffraction
- 7.7. In situ Studies of Adsorption, Reaction and Growth
- 7.7.1. Vicinal Surfaces of Silicon
- 7.7.2. Silicon Surfaces at High Temperatures
- 7.7.3. Initial Stages of Oxygen Interaction and Oxidation of Silicon Surfaces
- 7.7.4. Growth of Silicon by Chemical Vapour Deposition
- 7.7.5. Lithography: Fabrication of Nanostructures
- 7.7.6. Biological Material and Polymers
- 7.8. Prospects for the Future
- References
- 8. Multi-Method High-Resolution Surface Analysis with Slow Electrons
- 8.1. Introduction
- 8.2. Interaction of Slow Electrons with Condensed Matter
- 8.3. Electron-Optical Considerations
- 8.4. Analytic Methods in the SPELEEM
- 8.4.1. SPLEEM
- 8.4.2. LEEM
- 8.4.3. Comparison of AEEM and XPEEM
- 8.4.4. XPEEM with the SPELEEM
- 8.5. Some Applications of SPELEEM
- 8.6. Concluding Remarks and Outlook
- References
- 9. From Microcharacterization to Macroscopic Property: A Pathway Discussed on Metal/Ceramic Composites
- 9.1. Introduction
- 9.2. Interfacial Decohesion
- 9.3. Metal/Ceramic Interfaces
- 9.3.1. Background
- 9.3.2. Materials and Mechanical Testing
- 9.3.3. Characterisation of Microstructures and Interfaces
- 9.3.4. Mechanical Properties
- 9.4. Metal/Ceramic Composites with Interpenetrating Networks
- 9.4.1. Materials
- 9.4.2. Characterisation of Microstructures and Interfaces
- 9.4.3. Residual Stresses
- 9.4.4. Thermomechanical Behavior
- 9.4.5. Mechanical Properties
- 9.5. Outlook: Future Requirements and Developments
- References
- 10. Microstructural Characterization of Materials: An Assessment
- 10.1. Microcharacterization of Materials
- Contributing Institutions
- Index