High-resolution imaging and spectrometry of materials /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2003.
Description:xiv, 440 p. : ill. ; 24 cm.
Language:English
Series:Springer series in materials science, 0933-033X ; 50
Springer series in materials science ; v. 50.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4840334
Hidden Bibliographic Details
Other authors / contributors:Rühle, Manfred.
Ernst, F. (Frank), 1938-
ISBN:3540418180 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Microcharacterisation of Materials
  • References
  • 2. Electron Scattering
  • 2.1. Introduction
  • 2.2. The Schrödinger Equation
  • 2.3. The Scattering Amplitude
  • 2.4. The Born Approximation
  • 2.5. The Mutual Dynamic Object Spectrum
  • 2.6. Mixed Dynamic Form-Factor
  • 2.7. Coherence Function Approach
  • 2.8. Generalized Multislice Method
  • References
  • 3. Structure Determination by Quantitative High-Resolution Electron Microscopy (Q-HRTEM)
  • 3.1. Introduction
  • 3.2. Strategies of Structure Retrieval
  • 3.2.1. Simulation of Image Formation in HRTEM
  • 3.2.2. Object Classes and Object-Image Relations in HRTEM
  • 3.3. Strain and Pattern Mapping
  • 3.3.1. Displacement Errors
  • 3.3.2. Classification of Strain Mapping Techniques
  • 3.3.3. Local Peak Detection
  • 3.3.4. Integral Peak Detection
  • 3.3.5. Geometric Phase Mapping
  • 3.3.6. Comparison of Techniques and Postprocessing Steps
  • 3.3.7. Pattern Mapping
  • 3.3.8. Noise Filters with Structure-Determination Strategies
  • 3.4. Iterative Digital Image Matching (IDIM)
  • 3.4.1. Algorithms and Modules of Iterative Refinement
  • 3.4.2. Applications in Interface and Dislocation Science
  • 3.4.3. Probability Calculus and Precision Estimation
  • 3.5. HRTEM-Based Structure Determination Techniques
  • 3.5.1. Classification of Techniques
  • 3.5.2. List of Techniques Not Covered in This Book
  • 3.5.3. A Practical Guide
  • 3.6. Conclusions and Outlook
  • References
  • 4. Quantitative Analytical Transmission Electron Microscopy
  • 4.1. Introduction
  • 4.2. Basics of Electron Energy-Loss Spectroscopy (EELS)
  • 4.2.1. Inelastic Scattering Processes
  • 4.2.2. Instrumentation: Dedicated Scanning and Energy-Filtering TEM
  • 4.3. Investigation of Interfaces and Grain Boundaries
  • 4.3.1. Experimental Techniques
  • 4.3.2. Segregation at Grain Boundaries in Copper
  • 4.3.3. Bonding at Metal-Ceramic Interfaces
  • 4.4. Energy-Filtering Transmission Electron Microscopy
  • 4.4.1. Basic Equations for Quantification
  • 4.4.2. Elemental Distribution Images
  • 4.4.3. Noise Statistics
  • 4.4.4. Detection Limits
  • 4.4.5. Resolution Limits
  • 4.4.6. Preservation of Elastic Scattering Contrast
  • 4.4.7. Relativistic Intensity Distribution
  • 4.4.8. Quantitative Analysis of ESI Series
  • 4.4.9. Analysis of Near-Edge Fine Structure
  • 4.5. Quantitative Convergent Beam Electron Diffraction
  • 4.5.1. Basic Principles of CBED
  • 4.5.2. Determination of Bonding Charge Densities
  • 4.5.3. Bonding Charge Density of NiAl
  • References
  • 5. Advances in Electron Optics
  • 5.1. Fundamentals of Image Formation
  • 5.1.1. Lippmann-Schwinger Equation
  • 5.1.2. Kinematic Approximation
  • 5.1.3. Phase Contrast
  • 5.1.4. Diffractograms
  • 5.2. Properties of Aplanatic Electron Lenses
  • 5.2.1. Sine Condition
  • 5.2.2. Axial Aberrations
  • 5.2.3. Generalized Coma
  • 5.3. Perturbation Formalism
  • 5.3.1. Gaussian Optics
  • 5.3.2. Path and Momentum Deviations
  • 5.3.3. Iteration Algorithm
  • 5.3.4. Symplectic Representation
  • 5.3.5. Canonical Boundary Conditions
  • 5.3.6. Systems with Special Symmetry
  • 5.4. Systems with Threefold Symmetry
  • 5.4.1. Paraxial Trajectories
  • 5.4.2. Second-Order Path Deviation
  • 5.4.3. Third-Order Aberrations
  • 5.4.4. Outline of a Fifth-Order Double Anastigmat
  • 5.5. W-Filter
  • 5.5.1. Geometry of the W-Filter
  • 5.5.2. Paraxial Trajectories
  • 5.5.3. SCOFF Design
  • 5.5.4. Second-Rank Aberrations
  • 5.6. Conclusion
  • References
  • 6. Tomography by Atom Probe Field Ion Microscopy
  • 6.1. Introduction
  • 6.2. Experimental Technique
  • 6.2.1. The Field Ion Microscope (FIM)
  • 6.2.2. The Atom Probe (APFIM)
  • 6.2.3. The Position-Sensitive Detectors (PSD)
  • 6.3. Tomography
  • 6.3.1. The Ion Trajectories
  • 6.3.2. Image Projections
  • 6.3.3. Tomographic Reconstruction
  • 6.3.4. Data Analysis
  • 6.3.5. Artefacts of the Reconstruction
  • 6.4. Atom Probe Tomography in Materials Studies
  • 6.4.1. Distribution of Solutes
  • 6.4.2. Early Stages of Phase Formation
  • 6.4.3. Segregation Phenomena
  • References
  • List of Standard Abbreviations
  • List of Standard Abbreviations
  • 7. Scanning Tunneling Microscopy (STM) and Spectroscopy (STS), Atomic Force Microscopy (AFM)
  • 7.1. Introduction
  • 7.2. Scanning Tunneling Microscopy (STM)
  • 7.3. Scanning Tunneling Spectroscopy (STS)
  • 7.4. Atomic Force Microscopy (AFM)
  • 7.5. Special Techniques
  • 7.5.1. Generalities
  • 7.5.2. STM in Electrochemistry
  • 7.6. Combination of STM with Other Techniques
  • 7.6.1. STM and Low-Energy Electron Diffraction
  • 7.6.2. STM and Surface X-ray Diffraction
  • 7.7. In situ Studies of Adsorption, Reaction and Growth
  • 7.7.1. Vicinal Surfaces of Silicon
  • 7.7.2. Silicon Surfaces at High Temperatures
  • 7.7.3. Initial Stages of Oxygen Interaction and Oxidation of Silicon Surfaces
  • 7.7.4. Growth of Silicon by Chemical Vapour Deposition
  • 7.7.5. Lithography: Fabrication of Nanostructures
  • 7.7.6. Biological Material and Polymers
  • 7.8. Prospects for the Future
  • References
  • 8. Multi-Method High-Resolution Surface Analysis with Slow Electrons
  • 8.1. Introduction
  • 8.2. Interaction of Slow Electrons with Condensed Matter
  • 8.3. Electron-Optical Considerations
  • 8.4. Analytic Methods in the SPELEEM
  • 8.4.1. SPLEEM
  • 8.4.2. LEEM
  • 8.4.3. Comparison of AEEM and XPEEM
  • 8.4.4. XPEEM with the SPELEEM
  • 8.5. Some Applications of SPELEEM
  • 8.6. Concluding Remarks and Outlook
  • References
  • 9. From Microcharacterization to Macroscopic Property: A Pathway Discussed on Metal/Ceramic Composites
  • 9.1. Introduction
  • 9.2. Interfacial Decohesion
  • 9.3. Metal/Ceramic Interfaces
  • 9.3.1. Background
  • 9.3.2. Materials and Mechanical Testing
  • 9.3.3. Characterisation of Microstructures and Interfaces
  • 9.3.4. Mechanical Properties
  • 9.4. Metal/Ceramic Composites with Interpenetrating Networks
  • 9.4.1. Materials
  • 9.4.2. Characterisation of Microstructures and Interfaces
  • 9.4.3. Residual Stresses
  • 9.4.4. Thermomechanical Behavior
  • 9.4.5. Mechanical Properties
  • 9.5. Outlook: Future Requirements and Developments
  • References
  • 10. Microstructural Characterization of Materials: An Assessment
  • 10.1. Microcharacterization of Materials
  • Contributing Institutions
  • Index