Scattering from model nonspherical particles : theory and applications to environmental physics /

Saved in:
Bibliographic Details
Author / Creator:Borghese, F. (Ferdinando), 1940-
Imprint:Berlin ; New York : Springer, c2003.
Description:xiv, 253 p. : ill. ; 25 cm.
Language:English
Series:Physics of earth and space environments, 1610-1677
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4841060
Hidden Bibliographic Details
Other authors / contributors:Denti, P. (Paolo), 1942-
Saija, R. (Rosalba), 1958-
ISBN:3540440143 (alk. paper)
Notes:Includes bibliographical references (p. [245]-249) and index.
Table of Contents:
  • 1. Multipole Fields
  • 1.1. Introduction
  • 1.2. Field Equations
  • 1.3. Vector Helmholtz Equation
  • 1.4. Transformation Properties of Vector Fields
  • 1.4.1. Cartesian Vectors
  • 1.4.2. Spin of a Vector Field
  • 1.5. Eigenvectors of the Angular Momentum
  • 1.5.1. Representations of the Rotation Operators
  • 1.5.2. Spherical Harmonics
  • 1.5.3. Spin Eigenvectors
  • 1.6. Spherical Tensors on the Unit Sphere
  • 1.6.1. Coupling of Angular Momenta
  • 1.6.2. Clebsch-Gordan Series
  • 1.6.3. Irreducible Spherical Tensors
  • 1.6.4. Vector Solutions to the Helmholtz Equation
  • 1.6.5. Divergence and Curl of the Vector Helmholtz Harmonics
  • 1.7. Multipole Fields
  • 1.7.1. Hansen's Vectors
  • 1.7.2. Vector Spherical Harmonics
  • 1.7.3. Spherical Multipole Fields
  • 1.8. Addition Theorem for Multipole Fields
  • 1.8.1. Nozawa's Theorem
  • 1.8.2. Addition Theorem for the Vector Helmholtz Harmonics
  • 1.8.3. Application to Hansen's Vectors
  • 2. Propagation Through an Assembly of Nonspherical Scatterers
  • 2.1. Scattering Amplitude
  • 2.2. Cross Sections
  • 2.3. Plane of Scattering
  • 2.3.1. Polarization of the Incident Plane Wave
  • 2.3.2. Polarization of the Scattered Wave
  • 2.4. Stokes Parameters
  • 2.4.1. Müller Transformation Matrix
  • 2.5. Optical Theorem
  • 2.6. Scattering by an Ensemble of Particles
  • 2.7. Refractive Index of a Dispersion of Particles
  • 2.7.1. Definition of the Refractive Index
  • 2.7.2. Features of the Refractive Index
  • 3. Multipole Expansions and Transition Matrix
  • 3.1. Multipole Expansions
  • 3.1.1. Expansion of a Homogeneous Plane Wave
  • 3.1.2. Inhomogeneous Plane Wave
  • 3.1.3. Scattered Field
  • 3.2. Transition Matrix
  • 3.3. Refractive Index of a Polydispersion of Particles
  • 3.4. Orientational Averages
  • 3.4.1. Asymmetry Parameter
  • 3.5. Effect of an Electrostatic Field
  • 3.5.1. Polarizability of a Particle of Arbitrary Shape
  • 3.6. Effect of the Diffusive Motion
  • 4. Transition Matrix of Single and Aggregated Spheres
  • 4.1. Homogeneous Spheres
  • 4.2. Radially Nonhomogeneous Spheres
  • 4.3. Resonances
  • 4.4. Aggregates of Spheres
  • 4.5. Spheres Containing Spherical Inclusions
  • 4.6. Finite Elements Methods
  • 4.6.1. Discrete Dipole Approximation
  • 4.6.2. Finite Difference Time Domain Method
  • 5. Scattering from Particles on a Plane Surface
  • 5.1. Incident and Reflected Fields
  • 5.2. Perfectly Reflecting Surface
  • 5.2.1. Orientational Averages
  • 5.3. Dielectric Half-Space
  • 5.3.1. Reflection Rule for H-Multipole Fields
  • 5.3.2. Calculation of the Reflected Field
  • 5.4. Scattering from a Sphere on a Dielectric Substrate
  • 5.4.1. Reflection of the Incident and Scattered Wave
  • 5.4.2. Amplitudes of the Scattered Field
  • 5.4.3. Scattering Amplitude and Transition Matrix
  • 5.5. Aggregated Spheres on a Dielectric Substrate
  • 5.5.1. Multipole Expansion of the Fields
  • 5.5.2. Transition Matrix for an Aggregate in the Presence of a Surface
  • 5.6. Perfectly Reflecting vs. Dielectric Surface: Similarities and Differences
  • 6. Applications: Aggregated Spheres, Layered Spheres, and Spheres Containing Inclusions
  • 6.1. General Features of Scattering from Aggregated Spheres
  • 6.1.1. Comparison with Experimental Data
  • 6.1.2. Effect of the Structural Changes
  • 6.2. Clusters in an Electrostatic Field
  • 6.3. Extinction from Single and Aggregated Layered Spheres
  • 6.3.1. Metal Spheres with a Soft Surface
  • 6.3.2. Metal Spheres with a Dielectric Coating
  • 6.3.3. Dielectric Spheres with a Metal Coating
  • 6.3.4. Metal Spheres with a Metallic Coating
  • 6.3.5. Considerations on Convergence
  • 6.4. Spheres Containing Inclusions
  • 6.4.1. Metallic Inclusion in a Dielectric Sphere
  • 6.4.2. Empty Cavity in a Dielectric Sphere
  • 6.4.3. Spheres Containing Two Metallic Inclusions
  • 6.4.4. Resonances of a Sphere Containing a Spherical Inclusion
  • 6.5. Correlation Spectroscopy
  • 7. Applications: Single and Aggregated Spheres and Hemispheres on a Plane Interface
  • 7.1. Aggregated Spheres and Hemispheres on a Metallic Surface
  • 7.2. Inclusion-Containing Hemispheres on a Metallic Surface
  • 7.3. Resonance Suppression Mechanism
  • 7.3.1. Single Hemispheres
  • 7.3.2. Binary Clusters
  • 7.4. Particles on a Dielectric Substrate
  • 7.4.1. Single Spheres
  • 7.4.2. Aggregates of Spheres in Fixed Orientation
  • 7.4.3. Randomly Oriented Aggregates
  • 8. Applications: Atmospheric Ice Crystals
  • 8.1. Properties of Atmospheric Ice Crystals in the Infrared
  • 8.2. Ice Crystals in the mm Wave Range
  • 9. Applications: Cosmic Dust Grains
  • 9.1. Introduction
  • 9.2. Modeling Cosmic Dust Grains as Aggregates
  • 9.3. Fluffy Particles
  • 9.3.1. Optical Properties of Porous Bare Grains
  • 9.3.2. Coated Grains and Clustering
  • A. Appendix
  • A.1. Bessel and Hankel Functions
  • A.1.1. Mie Coefficients for Radially Nonhomogeneous Spheres
  • A.2. Spherical Harmonics
  • A.3. Clebsch-Gordan Coefficients
  • A.3.1. Translation of Origin
  • A.3.2. Orientational Averages
  • A.4. Rotation Matrices D (l)
  • A.5. Calculating M -1 , H -1 , and {{\rm H}}_{{\alpha}}^{{-1}}
  • A.6. General Approach to the Computational Problem
  • References
  • Index