Scattering from model nonspherical particles : theory and applications to environmental physics /
Saved in:
Author / Creator: | Borghese, F. (Ferdinando), 1940- |
---|---|
Imprint: | Berlin ; New York : Springer, c2003. |
Description: | xiv, 253 p. : ill. ; 25 cm. |
Language: | English |
Series: | Physics of earth and space environments, 1610-1677 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4841060 |
Table of Contents:
- 1. Multipole Fields
- 1.1. Introduction
- 1.2. Field Equations
- 1.3. Vector Helmholtz Equation
- 1.4. Transformation Properties of Vector Fields
- 1.4.1. Cartesian Vectors
- 1.4.2. Spin of a Vector Field
- 1.5. Eigenvectors of the Angular Momentum
- 1.5.1. Representations of the Rotation Operators
- 1.5.2. Spherical Harmonics
- 1.5.3. Spin Eigenvectors
- 1.6. Spherical Tensors on the Unit Sphere
- 1.6.1. Coupling of Angular Momenta
- 1.6.2. Clebsch-Gordan Series
- 1.6.3. Irreducible Spherical Tensors
- 1.6.4. Vector Solutions to the Helmholtz Equation
- 1.6.5. Divergence and Curl of the Vector Helmholtz Harmonics
- 1.7. Multipole Fields
- 1.7.1. Hansen's Vectors
- 1.7.2. Vector Spherical Harmonics
- 1.7.3. Spherical Multipole Fields
- 1.8. Addition Theorem for Multipole Fields
- 1.8.1. Nozawa's Theorem
- 1.8.2. Addition Theorem for the Vector Helmholtz Harmonics
- 1.8.3. Application to Hansen's Vectors
- 2. Propagation Through an Assembly of Nonspherical Scatterers
- 2.1. Scattering Amplitude
- 2.2. Cross Sections
- 2.3. Plane of Scattering
- 2.3.1. Polarization of the Incident Plane Wave
- 2.3.2. Polarization of the Scattered Wave
- 2.4. Stokes Parameters
- 2.4.1. Müller Transformation Matrix
- 2.5. Optical Theorem
- 2.6. Scattering by an Ensemble of Particles
- 2.7. Refractive Index of a Dispersion of Particles
- 2.7.1. Definition of the Refractive Index
- 2.7.2. Features of the Refractive Index
- 3. Multipole Expansions and Transition Matrix
- 3.1. Multipole Expansions
- 3.1.1. Expansion of a Homogeneous Plane Wave
- 3.1.2. Inhomogeneous Plane Wave
- 3.1.3. Scattered Field
- 3.2. Transition Matrix
- 3.3. Refractive Index of a Polydispersion of Particles
- 3.4. Orientational Averages
- 3.4.1. Asymmetry Parameter
- 3.5. Effect of an Electrostatic Field
- 3.5.1. Polarizability of a Particle of Arbitrary Shape
- 3.6. Effect of the Diffusive Motion
- 4. Transition Matrix of Single and Aggregated Spheres
- 4.1. Homogeneous Spheres
- 4.2. Radially Nonhomogeneous Spheres
- 4.3. Resonances
- 4.4. Aggregates of Spheres
- 4.5. Spheres Containing Spherical Inclusions
- 4.6. Finite Elements Methods
- 4.6.1. Discrete Dipole Approximation
- 4.6.2. Finite Difference Time Domain Method
- 5. Scattering from Particles on a Plane Surface
- 5.1. Incident and Reflected Fields
- 5.2. Perfectly Reflecting Surface
- 5.2.1. Orientational Averages
- 5.3. Dielectric Half-Space
- 5.3.1. Reflection Rule for H-Multipole Fields
- 5.3.2. Calculation of the Reflected Field
- 5.4. Scattering from a Sphere on a Dielectric Substrate
- 5.4.1. Reflection of the Incident and Scattered Wave
- 5.4.2. Amplitudes of the Scattered Field
- 5.4.3. Scattering Amplitude and Transition Matrix
- 5.5. Aggregated Spheres on a Dielectric Substrate
- 5.5.1. Multipole Expansion of the Fields
- 5.5.2. Transition Matrix for an Aggregate in the Presence of a Surface
- 5.6. Perfectly Reflecting vs. Dielectric Surface: Similarities and Differences
- 6. Applications: Aggregated Spheres, Layered Spheres, and Spheres Containing Inclusions
- 6.1. General Features of Scattering from Aggregated Spheres
- 6.1.1. Comparison with Experimental Data
- 6.1.2. Effect of the Structural Changes
- 6.2. Clusters in an Electrostatic Field
- 6.3. Extinction from Single and Aggregated Layered Spheres
- 6.3.1. Metal Spheres with a Soft Surface
- 6.3.2. Metal Spheres with a Dielectric Coating
- 6.3.3. Dielectric Spheres with a Metal Coating
- 6.3.4. Metal Spheres with a Metallic Coating
- 6.3.5. Considerations on Convergence
- 6.4. Spheres Containing Inclusions
- 6.4.1. Metallic Inclusion in a Dielectric Sphere
- 6.4.2. Empty Cavity in a Dielectric Sphere
- 6.4.3. Spheres Containing Two Metallic Inclusions
- 6.4.4. Resonances of a Sphere Containing a Spherical Inclusion
- 6.5. Correlation Spectroscopy
- 7. Applications: Single and Aggregated Spheres and Hemispheres on a Plane Interface
- 7.1. Aggregated Spheres and Hemispheres on a Metallic Surface
- 7.2. Inclusion-Containing Hemispheres on a Metallic Surface
- 7.3. Resonance Suppression Mechanism
- 7.3.1. Single Hemispheres
- 7.3.2. Binary Clusters
- 7.4. Particles on a Dielectric Substrate
- 7.4.1. Single Spheres
- 7.4.2. Aggregates of Spheres in Fixed Orientation
- 7.4.3. Randomly Oriented Aggregates
- 8. Applications: Atmospheric Ice Crystals
- 8.1. Properties of Atmospheric Ice Crystals in the Infrared
- 8.2. Ice Crystals in the mm Wave Range
- 9. Applications: Cosmic Dust Grains
- 9.1. Introduction
- 9.2. Modeling Cosmic Dust Grains as Aggregates
- 9.3. Fluffy Particles
- 9.3.1. Optical Properties of Porous Bare Grains
- 9.3.2. Coated Grains and Clustering
- A. Appendix
- A.1. Bessel and Hankel Functions
- A.1.1. Mie Coefficients for Radially Nonhomogeneous Spheres
- A.2. Spherical Harmonics
- A.3. Clebsch-Gordan Coefficients
- A.3.1. Translation of Origin
- A.3.2. Orientational Averages
- A.4. Rotation Matrices D (l)
- A.5. Calculating M -1 , H -1 , and {{\rm H}}_{{\alpha}}^{{-1}}
- A.6. General Approach to the Computational Problem
- References
- Index