Bioseparations science and engineering /

Saved in:
Bibliographic Details
Imprint:New York : Oxford University Press, c2003.
Description:xix, 406 p. : ill. ; 25 cm.
Language:English
Series:Topics in chemical engineering
Topics in chemical engineering (Oxford University Press)
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4845743
Hidden Bibliographic Details
Other authors / contributors:Harrison, Roger G., 1944-
ISBN:0195123409 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • All chapters (except Chapter 12) end with the following sections: Summary, Nomenclature, Problems, and References
  • Preface
  • Chapter 1. Introduction to Bioproducts and Bioseparations
  • 1.1. Instructional Objectives
  • 1.2. Broad Classification of Bioproducts
  • 1.3. Small Biomolecules
  • 1.3.1. Primary Metabolites
  • 1.3.2. Secondary Metabolites
  • 1.3.3. Summary of Small Biomolecules
  • 1.4. Macromolecules: Proteins
  • 1.4.1. Primary Structure
  • 1.4.2. Secondary Structure
  • 1.4.3. Tertiary Structure
  • Example
  • 1.1. Effect of a Reducing Agent on Protein Structure and Mobility
  • 1.4.4. Quaternary Structure
  • 1.4.5. Prosthetic Groups and Hybrid Molecules
  • 1.4.6. Functions and Commercial Uses of Proteins
  • 1.4.7. Stability of Proteins
  • 1.4.8. Recombinant Protein Expression
  • 1.5. Macromolecules: Nucleic Acids and Oligonucleotides
  • 1.6. Macromolecules: Polysaccharides
  • 1.7. Particulate Products
  • 1.8. Introduction to Bioseparations: Engineering Analysis
  • 1.8.1. Stages of Downstream Processing
  • Example
  • 1.2. :Initial Selection of Purification Steps
  • 1.8.2. Basic Principles of Engineering Analysis
  • 1.8.3. Process and Product Quality
  • 1.8.4. Criteria for Process Development
  • 1.9. The Route to Market
  • 1.9.1. The Chemical and Applications Range of the Bioproduct
  • 1.9.2. Documentation of Pharmaceutical Bioproducts
  • 1.9.3. GLP and cGMP
  • 1.9.4. Formulation
  • Chapter 2. Analytical Methods
  • 2.1. Instructional Objectives
  • 2.2. Specifications
  • 2.3. Assay Attributes
  • 2.3.1. Precision
  • 2.3.2. Accuracy
  • 2.3.3. Specificity
  • 2.3.4. Linearity, Limit of Detection, and Limit of Quantitation
  • 2.3.5. Range
  • 2.3.6. Robustness
  • 2.4. Analysis of Biological Activity
  • 2.4.1. Animal Model Assays
  • 2.4.2. Cell-Line-Derived Bioassays
  • 2.4.3. In Vitro Biochemical Assays
  • Example
  • 2.1. :Coupled Enzyme Assay for Alcohol Oxidase
  • 2.5. Analysis of Purity
  • 2.5.1. Electrophoretic Analysis
  • Example
  • 2.2. :Estimation of the Maximum Temperature in an Electrophoresis Gel
  • 2.5.2. High Performance Liquid Chromatography (HPLC)
  • 2.5.3. Mass Spectrometry
  • 2.5.4. Coupling of HPLC with Mass Spectrometry
  • 2.5.5. UV Absorbance
  • Example
  • 2.3. :Determination of Molar Absorptivity
  • 2.5.6. CHNO/Amino Acid Analysis (AAA)
  • Example
  • 2.4. :Calculations Based on CHNO Analysis
  • 2.5.7. Protein Assays
  • 2.5.8. Enzyme-Linked Immunosorbent Assay
  • 2.5.9. Gas Chromatography
  • 2.5.10. DNA Hybridization
  • 2.5.11. ICP/MS (AA)
  • 2.5.12. Dry Weight
  • 2.6. Microbiology Assays
  • 2.6.1. Sterility
  • 2.6.2. Bioburden
  • 2.6.3. Endotoxin
  • 2.6.4. Virus and Phage
  • Chapter 3. Cell Lysis and Flocculation
  • 3.1. Instructional Objectives
  • 3.2. Some Elements of Cell Structure
  • 3.2.1. Prokaryotic Cells
  • 3.2.2. Eukaryotic Cells
  • 3.3. Cell Lysis
  • 3.3.1. Osmotic and Chemical Cell Lysis
  • 3.3.2. Mechanical Methods of Lysis
  • 3.4. Flocculation
  • 3.4.1. The Electric Double Layer
  • Example
  • 3.1. :Dependence of the Debye Radius on the Type of Electrolyte
  • 3.4.2. Forces between Particles and Flocculation by Electrolytes
  • Example
  • 3.2. :Sensitivity of Critical Flocculation Concentration to Temperature and Counter-Ion Charge Number
  • 3.4.3. The Schulze-Hardy Rule