Bioseparations science and engineering /
Saved in:
Imprint: | New York : Oxford University Press, c2003. |
---|---|
Description: | xix, 406 p. : ill. ; 25 cm. |
Language: | English |
Series: | Topics in chemical engineering Topics in chemical engineering (Oxford University Press) |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4845743 |
Table of Contents:
- Preface
- All chapters (except Chapter 12) end with the following sections: Summary, Nomenclature, Problems, and References
- Preface
- Chapter 1. Introduction to Bioproducts and Bioseparations
- 1.1. Instructional Objectives
- 1.2. Broad Classification of Bioproducts
- 1.3. Small Biomolecules
- 1.3.1. Primary Metabolites
- 1.3.2. Secondary Metabolites
- 1.3.3. Summary of Small Biomolecules
- 1.4. Macromolecules: Proteins
- 1.4.1. Primary Structure
- 1.4.2. Secondary Structure
- 1.4.3. Tertiary Structure
- Example
- 1.1. Effect of a Reducing Agent on Protein Structure and Mobility
- 1.4.4. Quaternary Structure
- 1.4.5. Prosthetic Groups and Hybrid Molecules
- 1.4.6. Functions and Commercial Uses of Proteins
- 1.4.7. Stability of Proteins
- 1.4.8. Recombinant Protein Expression
- 1.5. Macromolecules: Nucleic Acids and Oligonucleotides
- 1.6. Macromolecules: Polysaccharides
- 1.7. Particulate Products
- 1.8. Introduction to Bioseparations: Engineering Analysis
- 1.8.1. Stages of Downstream Processing
- Example
- 1.2. :Initial Selection of Purification Steps
- 1.8.2. Basic Principles of Engineering Analysis
- 1.8.3. Process and Product Quality
- 1.8.4. Criteria for Process Development
- 1.9. The Route to Market
- 1.9.1. The Chemical and Applications Range of the Bioproduct
- 1.9.2. Documentation of Pharmaceutical Bioproducts
- 1.9.3. GLP and cGMP
- 1.9.4. Formulation
- Chapter 2. Analytical Methods
- 2.1. Instructional Objectives
- 2.2. Specifications
- 2.3. Assay Attributes
- 2.3.1. Precision
- 2.3.2. Accuracy
- 2.3.3. Specificity
- 2.3.4. Linearity, Limit of Detection, and Limit of Quantitation
- 2.3.5. Range
- 2.3.6. Robustness
- 2.4. Analysis of Biological Activity
- 2.4.1. Animal Model Assays
- 2.4.2. Cell-Line-Derived Bioassays
- 2.4.3. In Vitro Biochemical Assays
- Example
- 2.1. :Coupled Enzyme Assay for Alcohol Oxidase
- 2.5. Analysis of Purity
- 2.5.1. Electrophoretic Analysis
- Example
- 2.2. :Estimation of the Maximum Temperature in an Electrophoresis Gel
- 2.5.2. High Performance Liquid Chromatography (HPLC)
- 2.5.3. Mass Spectrometry
- 2.5.4. Coupling of HPLC with Mass Spectrometry
- 2.5.5. UV Absorbance
- Example
- 2.3. :Determination of Molar Absorptivity
- 2.5.6. CHNO/Amino Acid Analysis (AAA)
- Example
- 2.4. :Calculations Based on CHNO Analysis
- 2.5.7. Protein Assays
- 2.5.8. Enzyme-Linked Immunosorbent Assay
- 2.5.9. Gas Chromatography
- 2.5.10. DNA Hybridization
- 2.5.11. ICP/MS (AA)
- 2.5.12. Dry Weight
- 2.6. Microbiology Assays
- 2.6.1. Sterility
- 2.6.2. Bioburden
- 2.6.3. Endotoxin
- 2.6.4. Virus and Phage
- Chapter 3. Cell Lysis and Flocculation
- 3.1. Instructional Objectives
- 3.2. Some Elements of Cell Structure
- 3.2.1. Prokaryotic Cells
- 3.2.2. Eukaryotic Cells
- 3.3. Cell Lysis
- 3.3.1. Osmotic and Chemical Cell Lysis
- 3.3.2. Mechanical Methods of Lysis
- 3.4. Flocculation
- 3.4.1. The Electric Double Layer
- Example
- 3.1. :Dependence of the Debye Radius on the Type of Electrolyte
- 3.4.2. Forces between Particles and Flocculation by Electrolytes
- Example
- 3.2. :Sensitivity of Critical Flocculation Concentration to Temperature and Counter-Ion Charge Number
- 3.4.3. The Schulze-Hardy Rule