Pseudodifferential analysis on conformally compact spaces /

Saved in:
Bibliographic Details
Author / Creator:Lauter, Robert, 1967-
Imprint:Providence, RI : American Mathematical Society, 2003.
Description:xvi, 92 p. ; 26 cm.
Language:English
Series:Memoirs of the American Mathematical Society, 0065-9266 ; no. 777
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4849118
Hidden Bibliographic Details
ISBN:0821832727 (alk. paper)
Notes:"Volume 163, number 777 (fourth of 5 numbers)."
Includes bibliographical references and index.
Table of Contents:
  • Introduction
  • Acknowledgments
  • Part 1.. Fredholm theory for 0-pseudodifferential operators
  • Chapter 1.. Review on basic objects of 0-geometry
  • 1.1.. The 0-structure algebra
  • 1.2.. The extended 0-blow up
  • 1.3.. Relation to the 0-double space X[superscript 2 subscript 0]
  • 1.4.. The extended 0-triple space X[superscript 3 subscript 0,e]
  • 1.5.. 0-densities
  • Chapter 2.. The small 0-calculus and the 0-calculus with bounds
  • 2.1.. The Schwartz kernel theorem revisited
  • 2.2.. The small 0-calculus
  • 2.3.. Basic properties of the small 0-calculus
  • 2.4.. The 0-calculus with bounds
  • 2.5.. Basic properties of the 0-calculus with bounds
  • 2.6.. The indicial function
  • 2.7.. General bundles
  • Chapter 3.. The b-c-calculus on an interval
  • 3.1.. The b-c-structure algebra
  • 3.2.. The b-c-double space
  • 3.3.. b-c-densities
  • 3.4.. The b-c-calculus with bounds
  • 3.5.. Basic properties of the b-c-calculus
  • 3.6.. Fredholm theory for the b-c-calculus
  • 3.7.. Invariance of the b-c-calculus under the R[subscript +]-action
  • 3.8.. C*-algebras of b-c-operators
  • 3.9.. General bundles
  • Chapter 4.. The reduced normal operator
  • 4.1.. Definition of the reduced normal operator
  • 4.2.. Coordinate invariance of the reduced normal operator
  • 4.3.. Scale invariance of the reduced normal operator
  • 4.4.. Characterization of the reduced normal operator
  • 4.5.. Basic properties of the reduced normal operator
  • 4.6.. The case of 0-differential operators
  • 4.7.. General bundles
  • Chapter 5.. Weighted 0-Sobolev spaces
  • 5.1.. Boundedness of 0-operators of order 0 on L[superscript 2]-spaces
  • 5.2.. Weighted 0-Sobolev spaces
  • 5.3.. General bundles
  • Chapter 6.. Fredholm theory for 0-pseudodifferential operators
  • 6.1.. Symbol reproducing families
  • 6.2.. Characterization of Fredholm operators in [psi superscript 0 subscript 0](X; [superscript 0 Omega superscript 1/2])
  • 6.3.. Characterization of Fredholm operators in [psi superscript m,k subscript 0](X; [superscript 0 Omega superscript 1/2])
  • 6.4.. General bundles
  • Part 2.. Algebras of 0-pseudodifferential operators of order 0
  • Chapter 7.. C*-algebras of 0-pseudodifferential operators
  • 7.1.. Solvable C*-algebras
  • 7.2.. The reduced normal operator on S*[partial differential]X
  • 7.3.. Extension of the symbolic structure
  • 7.4.. The C*-algebra generated by the reduced normal operator
  • 7.5.. The C*-algebra B[superscript (a) subscript 0](X, [superscript 0 Omega superscript 1/2])
  • 7.6.. The spectrum of the C*-algebra B[superscript (a) subscript 0](X, [superscript 0 Omega superscript 1/2])
  • Chapter 8.. [psi]*-algebras of 0-pseudodifferential operators
  • 8.1.. Submultiplicative [psi]*-algebras
  • 8.2.. [psi]*-completions of b-c- and 0-calculus
  • Appendix A.. Spaces of conormal functions
  • Bibliography
  • Notations
  • Index