Transmission electron microscopy and diffractometry of materials /

Saved in:
Bibliographic Details
Author / Creator:Fultz, B. (Brent)
Edition:2nd ed.
Imprint:Berlin ; New York : Springer, c2002.
Description:xxi, 748 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4852556
Hidden Bibliographic Details
Other authors / contributors:Howe, James M., 1955-
ISBN:3540437649 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Diffraction and the X-RayPowder Diffractometer
  • 1.1. Diffraction
  • 1.1.1. Introduction to Diffraction
  • 1.1.2. Bragg's Law
  • 1.1.3. Strain Effects
  • 1.1.4. Size Effects
  • 1.1.5. A Symmetry Consideration
  • 1.1.6. Experimental Methods
  • 1.2. The Creation of X-Rays
  • 1.2.1. Bremsstrahlung
  • 1.2.2. Characteristic Radiation
  • 1.2.3. Synchrotron Radiation
  • 1.3. The X-Ray Powder Diffractometer
  • 1.3.1. Practice of X-Ray Generation
  • 1.3.2. Goniometer for Powder Diffraction
  • 1.3.3. Monochromators and Filters
  • 1.4. X-Ray Detectors for XRD and TEM
  • 1.4.1. Detector Principles
  • 1.4.2. Position-Sensitive Detectors
  • 1.4.3. Charge Sensitive Preamplifier
  • 1.4.4. Other Electronics
  • 1.5. Experimental X-Ray Powder Diffraction Data
  • 1.5.1. * Intensities of Powder Diffraction Peaks
  • 1.5.2. Phase Fraction Measurement
  • 1.5.3. Lattice Parameter Measurement
  • 1.5.4. * Refinement Methods for Powder Diffraction Data
  • 1.5.5. * Pair Distribution Function Analysis
  • Further Reading
  • Problems
  • 2. The TEM and its Optics
  • 2.1. Introduction to the Transmission Electron Microscope
  • 2.2. Working with Lenses and Ray Diagrams
  • 2.2.1. Single Lenses
  • 2.2.2. Multi-Lens Systems
  • 2.3. Modes of Operation of a TEM
  • 2.3.1. Conventional Modes
  • 2.3.2. Convergent-Beam Electron Diffraction
  • 2.3.3. High-Resolution Imaging
  • 2.4. Real Lens Systems
  • 2.4.1. Illumination Lens Systems
  • 2.4.2. Imaging Lens Systems
  • 2.5. Glass Lenses
  • 2.5.1. Interfaces
  • 2.5.2. Lenses and Rays
  • 2.5.3. Lenses and Phase Shifts
  • 2.6. Magnetic Lenses
  • 2.7. Lens Aberrations and Other Defects
  • 2.7.1. Spherical Aberration
  • 2.7.2. Chromatic Aberration
  • 2.7.3. Diffraction
  • 2.7.4. Astigmatism
  • 2.7.5. Gun Brightness
  • 2.8. Resolution
  • Further Reading
  • Problems
  • 3. Scattering
  • 3.1. Coherence and Incoherence
  • 3.1.1. Phase and Energy
  • 3.1.2. Wave Amplitudes and Cross-Sections
  • 3.2. X-Ray Scattering
  • 3.2.1. Electrodynamics of X-Ray Scattering
  • 3.2.2. * Inelastic Compton Scattering
  • 3.2.3. X-Ray Mass Attenuation Coefficients
  • 3.3. Coherent Elastic Scattering
  • 3.3.1. ‡ Born Approximation for Electrons
  • 3.3.2. Atomic Form Factors - Physical Picture
  • 3.3.3. ‡ Scattering of Electrons by Model Potentials
  • 3.3.4. ‡ * Atomic Form Factors - General Formulation
  • 3.4. * Nuclear Scattering
  • 3.4.1. Properties of Neutrons
  • 3.4.2. * Inelastic Neutron Scattering
  • 3.4.3. * Mössbauer Scattering
  • Further Reading
  • Problems
  • 4. Inelastic Electron Scattering and Spectroscopy
  • 4.1. Inelastic Electron Scattering
  • 4.2. Electron Energy-Loss Spectrometry (EELS)
  • 4.2.1. Instrumentation
  • 4.2.2. General Features of EELS Spectra
  • 4.2.3. * Fine Structure
  • 4.3. Plasmon Excitations
  • 4.3.1. Plasmon Principles
  • 4.3.2. * Plasmons and Specimen Thickness
  • 4.4. Core Excitations
  • 4.4.1. Scattering Angles and Energies - Qualitative
  • 4.4.2. ‡ Inelastic Form Factor
  • 4.4.3. ‡ * Double-Differential Cross-Section, d 2 ¿ in /d¿dE
  • 4.4.4. * Scattering Angles and Energies - Quantitative
  • 4.4.5. ‡ * Differential Cross-Section, d¿ in /dE
  • 4.4.6. ‡ Partial and Total Cross-Sections, ¿ in
  • 4.4.7. Quantification of EELS Core Edges
  • 4.5. * Energy-Filtered TEM Imaging (EFTEM)
  • 4.5.1. * Energy Filters
  • 4.5.2. * Chemical Mapping with Energy-Filtered Images
  • 4.5.3. Chemical Analysis with High Spatial Resolution
  • 4.6. Energy Dispersive X-Ray Spectrometry (EDS)
  • 4.6.1. Electron Trajectories Through Materials
  • 4.6.2. Fluorescence Yield
  • 4.6.3. EDS Instrumentation Considerations
  • 4.6.4. Thin-Film Approximation
  • 4.6.5. * ZAF Correction
  • 4.6.6. Limits of Microanalysis
  • Further Reading
  • Problems
  • 5. Diffraction from Crystals
  • 5.1. Sums of Wavelets from Atoms
  • 5.1.1. Electron Diffraction from a Material
  • 5.1.2. Wave Diffraction from a Material
  • 5.2. The Reciprocal Lattice and the Laue Condition
  • 5.2.1. Diffraction from a Simple Lattice
  • 5.2.2. Reciprocal Lattice
  • 5.2.3. Laue Condition
  • 5.2.4. Equivalence of the Laue Condition and Bragg's Law
  • 5.2.5. Reciprocal Lattices of Cubic Crystals
  • 5.3. Diffraction from a Lattice with a Basis
  • 5.3.1. Structure Factor and Shape Factor
  • 5.3.2. Structure Factor Rules
  • 5.3.3. Symmetry Operations and Forbidden Diffractions
  • 5.3.4. Superlattice Diffractions
  • 5.4. Crystal Shape Factor
  • 5.4.1. Shape Factor of Rectangular Prism
  • 5.4.2. Other Shape Factors
  • 5.4.3. Small Particles in a Large Matrix
  • 5.5. Deviation Vector (Deviation Parameter)
  • 5.6. Ewald Sphere
  • 5.6.1. Ewald Sphere Construction
  • 5.6.2. Ewald Sphere and Bragg's Law
  • 5.6.3. Tilting Specimens and Tilting Electron Beams
  • 5.7. Laue Zones
  • 5.8. * Effects of Curvature of the Ewald Sphere
  • Further Reading
  • Problems
  • 6. Electron Diffraction and Crystallography
  • 6.1. Indexing Diffraction Patterns
  • 6.1.1. Issues in Indexing
  • 6.1.2. Method 1 - Start with Zone Axis
  • 6.1.3. Method 2 - Start with Diffraction Spots
  • 6.2. Stereographic Projections and Their Manipulation
  • 6.2.1. Construction of a Stereographic Projection
  • 6.2.2. Relationship Between Stereographic Projections and Electron Diffraction Patterns
  • 6.2.3. Manipulations of Stereographic Projections
  • 6.3. Kikuchi Lines and Specimen Orientation
  • 6.3.1. Origin of Kikuchi Lines
  • 6.3.2. Indexing Kikuchi Lines
  • 6.3.3. Specimen Orientation and Deviation Parameter
  • 6.3.4. The Sign of s
  • 6.3.5. Kikuchi Maps
  • 6.4. Double Diffraction
  • 6.4.1. Occurrence of Forbidden Diffractions
  • 6.4.2. Interactions Between Crystallites
  • 6.5. * Convergent-Beam Electron Diffraction
  • 6.5.1. Convergence Angle of Incident Electron Beam
  • 6.5.2. Determination of Sample Thickness
  • 6.5.3. Measurements of Unit Cell Parameters
  • 6.5.4. ‡ * Determination of Point Groups
  • 6.5.5. ‡ * Determination of Space Groups
  • 6.6. Further Reading
  • Problems
  • 7. Diffraction Contrast in TEM Images
  • 7.1. Contrast in TEM Images
  • 7.2. A Review of Structure and Shape Factors
  • 7.3. Extinction Distance
  • 7.4. The Phase-Amplitude Diagram
  • 7.5. Fringes from Sample Thickness Variations
  • 7.5.1. Thickness and Phase-Amplitude Diagrams
  • 7.5.2. Thickness Contours in TEM Images
  • 7.6. Bend Contours in TEM Images
  • 7.7. Diffraction Contrast from Strain Fields
  • 7.8. Dislocations and Burgers Vector Determination
  • 7.8.1. Diffraction Contrast from Dislocation Strain Fields
  • 7.8.2. The g · b Rule for Null Contrast
  • 7.8.3. Image Position and Dislocation Pairs or Loops
  • 7.9. Semi-Quantitative Diffraction Contrast from Dislocations
  • 7.10. Weak-Beam Dark-Field (WBDF) Imaging of Dislocations
  • 7.10.1. Procedure to Make a WBDF Image
  • 7.10.2. Diffraction Condition for a WBDF Image
  • 7.10.3. Analysis of WBDF Images
  • 7.11. Fringes at Interfaces
  • 7.11.1. Phase Shifts of Electron Wavelets Across Interfaces
  • 7.11.2. Moiré Fringes
  • 7.12. Diffraction Contrast from Stacking Faults
  • 7.12.1. Kinematical Treatment
  • 7.12.2. Results from Dynamical Theory
  • 7.12.3. Determination of the Intrinsic or Extrinsic Nature of Stacking Faults
  • 7.12.4. Partial Dislocations Bounding the Fault
  • 7.12.5. An Example of a Stacking Fault Analysis
  • 7.12.6. Sets of Stacking Faults in TEM Images
  • 7.12.7. Related Fringe Contrast
  • 7.13. Antiphase (¿) Boundaries and ¿ Boundaries
  • 7.13.1. Antiphase Boundaries
  • 7.13.2. ¿ Boundaries
  • 7.14. Contrast from Precipitates and Other Defects
  • 7.14.1. Vacancies
  • 7.14.2. Coherent Precipitates
  • 7.14.3. Semicoherent and Incoherent Particles
  • Further Reading
  • Problems
  • 8. Diffraction Lineshapes
  • 8.1. Diffraction Line Broadening and Convolution
  • 8.1.1. Crystallite Size Broadening
  • 8.1.2. Strain Broadening
  • 8.1.3. Instrumental Broadening - Convolution
  • 8.2. Fourier Transform Deconvolutions
  • 8.2.1. Mathematical Features
  • 8.2.2. Effects of Noise on Fourier Transform Deconvolutions
  • 8.3. Simultaneous Strain and Size Broadening
  • 8.4. * Fourier Methods with Multiple Orders
  • 8.4.1. ‡ * Formulation
  • 8.4.2. * Strain Heterogeneity and Peak Asymmetry
  • 8.4.3. * Column Lengths
  • 8.4.4. ‡ * Size Coefficients
  • 8.4.5. * Practical Issues in Warren-Averbach Analysis
  • 8.5. Comments on Diffraction Lineshapes
  • Further Reading
  • Problems
  • 9. Patterson Functions and Diffuse Scattering
  • 9.1. The Patterson Function
  • 9.1.1. Overview
  • 9.1.2. Atom Centers at Points in Space
  • 9.1.3. Definition of the Patterson Function
  • 9.1.4. Properties of Patterson Functions
  • 9.1.5. ‡ Perfect Crystals
  • 9.2. Patterson Functions for Homogeneous Disorder and Atomic Displacement Diffuse Scattering
  • 9.2.1. Deviations from Periodicity
  • 9.2.2. Uncorrelated Displacements
  • 9.2.3. * Correlated Displacements: Atomic Size Effects
  • 9.2.4. ‡ Temperature
  • 9.3. Diffuse Scattering from Chemical Disorder
  • 9.3.1. Randomness - Uncorrelated Chemical Disorder
  • 9.3.2. ‡ * SRO Parameters
  • 9.3.3. ‡ * Patterson Function for Chemical SRO
  • 9.3.4. Short-Range Order Diffuse Intensity
  • 9.3.5. ‡ * Isotropic Materials
  • 9.3.6. * Polycrystalline Average and Single Crystal SRO
  • 9.4. * Amorphous Materials
  • 9.4.1. ‡ * One-Dimensional Model
  • 9.4.2. ‡ * Radial Distribution Function
  • 9.4.3. ‡ * Partial Pair Correlation Functions
  • 9.5. Small Angle Scattering
  • 9.5.1. Concept of Small Angle Scattering
  • 9.5.2. * Guinier Approximation (small ¿k)
  • 9.5.3. * Porod Law (large ¿k)
  • 9.5.4. ‡ * Density-Density Correlations (all ¿k)
  • Further Reading
  • Problems
  • 10. High-Resolution TEM Imaging
  • 10.1. Huygens Principle
  • 10.1.1. Wavelets from Points in a Continuum
  • 10.1.2. Huygens Principle for a Spherical Wavefront - Fresnel Zones
  • 10.1.3. ‡ Fresnel Diffraction Near an Edge
  • 10.2. Physical Optics of High-Resolution Imaging
  • 10.2.1. ‡ Wavefronts and Fresnel Propagator
  • 10.2.2. ‡ Lenses
  • 10.2.3. ‡ Materials
  • 10.3. Experimental High-Resolution Imaging
  • 10.3.1. Defocus and Spherical Aberration
  • 10.3.2. ‡ Lenses and Specimens
  • 10.3.3. Lens Characteristics
  • 10.4. * Simulations of High-Resolution TEM Images
  • 10.4.1. Principles of Simulations
  • 10.4.2. * Practice of Simulations
  • 10.5. Issues and Examples in High-Resolution TEM Imaging
  • 10.5.1. Images of Nanostructures
  • 10.5.2. Examples of Interfaces
  • 10.5.3. * Effects of Solute Misfit and Scattering Factor Differences on Spot Intensities
  • 10.5.4. * Specimen and Microscope Parameters
  • 10.5.5. * Hints and Tricks for HRTEM
  • 10.6. Z-Contrast Imaging
  • 10.6.1. Characteristics of Z-Contrast Imaging
  • 10.6.2. Comparison of Z-Contrast Imaging with HRTEM Imaging
  • 10.6.3. Z-Contrast Imaging with Atomic Resolution
  • 10.6.4. Developments in Atomic-Resolution Imaging
  • Further Reading
  • Problems
  • 11. Dynamical Theory
  • 11.1. Chapter Overview
  • 11.2. ‡ * Mathematical Features of High-Energy Electrons in a Periodic Potential
  • 11.2.1. ‡ * The Schrödinger Equation
  • 11.2.2. ‡ Kinematical and Dynamical Theory
  • 11.2.3. The Crystal as a Phase Grating
  • 11.3. First Approach to Dynamical Theory - Beam Propagation
  • 11.4. ‡ Second Approach to Dynamical Theory - Bloch Waves and Dispersion Surfaces
  • 11.4.1. Diffracted Beams, {¿ g }, are Beats of Bloch Waves, {¿ (j) }
  • 11.4.2. Crystal Periodicity and Dispersion Surfaces
  • 11.4.3. Energies of Bloch Waves in a Periodic Potential
  • 11.4.4. ‡ General Two-Beam Dynamical Theory
  • 11.5. Essential Difference Between Kinematical and Dynamical Theories
  • 11.6. ‡ Diffraction Error, s g , in Two-Beam Dynamical Theory
  • 11.6.1. Bloch Wave Amplitudes and Diffraction Error
  • 11.6.2. Dispersion Surface Construction
  • 11.7. Dynamical Diffraction Contrast from Crystal Defects
  • 11.7.1. Dynamical Diffraction Contrast Without Absorption
  • 11.7.2. ‡ * Two-Beam Dynamical Theory of Stacking Fault Contrast
  • 11.7.3. Dynamical Diffraction Contrast with Absorption
  • 11.8. ‡ * Multi-Beam Dynamical Theories of Electron Diffraction
  • Further Reading
  • Problems
  • Bibliography
  • Further Reading
  • References and Figures
  • A. Appendix
  • A.1. Indexed Powder Diffraction Patterns
  • A.2. Mass Attenuation Coefficients for Characteristic K\overline {{\alpha}} X-Rays
  • A.3. Atomic Form Factors for X-Rays
  • A.4. X-Ray Dispersion Corrections for Anomalous Scattering
  • A.5. Atomic Form Factors for 200 keV Electrons and Procedure for Conversion to Other Voltages
  • A.6. Indexed Single Crystal Diffraction Patterns: fcc, bcc, dc, hcp
  • A.7. Stereographic Projections
  • A.8. Examples of Fourier Transforms
  • A.9. K¿ 1 , K¿ 2 Splitting and the Rachinger Correction
  • A.10. Numerical Approximation for the Voigt Function
  • A.11. Debye-Waller Factor from Wave Amplitude
  • A.12. Review of Dislocations
  • A.13. TEM Laboratory Exercises
  • A.3.1. Preliminary - JEOL 2000FX Daily Operation
  • A.3.2. Preliminary - Philips 400T Daily Operation
  • A.3.3. Laboratory 1 - Microscope Procedures and Calibration with Au and MoO 3
  • A.3.4. Laboratory 2 - Diffraction Analysis of ¿′ Precipitates
  • A.3.5. Laboratory 3 - Chemical Analysis of ¿′ Precipitates
  • A.3.6. Laboratory 4 - Contrast Analysis of Defects
  • A.14. Fundamental and Derived Constants
  • Index