Tensor analysis and continuum mechanics /

Saved in:
Bibliographic Details
Author / Creator:Talpaert, Yves.
Imprint:Dordrecht ; Boston : Kluwer Academic Publishers, c2002.
Description:xvi, 591 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4861131
Hidden Bibliographic Details
ISBN:1402010559 (acid-free paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Chapter 1. Tensors
  • 1.. First Steps with Tensors
  • 1.1. Multilinear forms
  • Linear mapping
  • Multilinear form
  • 1.2. Dual space, vectors and covectors
  • Dual space
  • Expression of a covector
  • Einstein summation convention
  • Change of basis and cobasis
  • 1.3. Tensors and tensor product
  • Tensor product of multilinear forms
  • Tensor of type (0/1)
  • Tensor of type (1/0)
  • Tensor of type (0/2)
  • Tensor of type (2/0)
  • Tensor of type (1/1)
  • Tensor of type (q/p)
  • Symmetric and antisymmetric tensors
  • 2.. Operations on Tensors
  • 2.1. Tensor algebra
  • Addition of tensors
  • Multiplication of a tensor by a scalar
  • Tensor multiplication
  • 2.2. Contraction and tensor criteria
  • Contraction
  • Tensor criteria
  • 3.. Euclidean Vector Space
  • 3.1. Pre-Euclidean vector space
  • Scalar multiplication and pre-Euclidean space
  • Fundamental tensor
  • 3.2. Canonical isomorphism and conjugate tensor
  • Canonical isomorphism
  • Conjugate tensor and reciprocal basis
  • Covariant and contravariant representations of vectors
  • Representation of tensors of order 2 and contracted products
  • 3.3. Euclidean vector spaces
  • 4.. Exterior Algebra
  • 4.1. p-forms
  • Definition of a p-form
  • Exterior product of 1-forms
  • Expression of a p-form
  • Exterior product of p-forms
  • Exterior algebra
  • 4.2. q-vectors
  • 5.. Point Spaces
  • 5.1. Point space and natural frame
  • Point space
  • Coordinate system and frame of reference
  • Natural frame
  • 5.2. Tensor fields and metric element
  • Transformations of curvilinear coordinates
  • Tensor fields
  • Metric element
  • 5.3. Christoffel symbols
  • Definition of Christoffel symbols
  • Ricci identities and Christoffel formulae
  • 5.4. Absolute differential, Covariant derivative, Geodesic
  • Absolute differential of a vector, covariant derivatives
  • Absolute differential of a tensor, covariant derivatives
  • Geodesic and Euler's equations
  • Absolute derivative of a vector (along a curve)
  • 5.5. Volume form and adjoint
  • Volume form
  • Adjoint
  • 5.6. Differential operators
  • Gradient
  • Divergence
  • Curl
  • Laplacian
  • Exercises
  • Chapter 2. Lagrangian and Eulerian Descriptions
  • 1.. Lagrangian Description
  • 1.1. Configuration
  • 1.2. Deformation and Lagrangian Description
  • 1.3. Flow and hypotheses of continuity
  • 1.4. Trajectories
  • 1.5. Streakline
  • 1.6. Velocity and acceleration of a particle
  • 1.7. Abstract configuration
  • 2.. Eulerian Description
  • 2.1. Definition; Comparison between L- and E-descriptions
  • 2.2. Trajectory and velocity
  • 2.3. Streamline
  • 2.4. Steady motion
  • Exercises
  • Chapter 3. Deformations
  • 1.. Homogeneous Transformation
  • 1.1. Definition of homogeneous transformations
  • 1.2. Convective transport
  • Convective transport of a vector
  • Convective transport of a volume
  • Simple shear
  • 1.3. Cauchy-Green deformation tensor and stretch
  • (Right) Cauchy-Green deformation tensor
  • Stretch
  • Shear angle
  • Principal stretches
  • 1.4. Finite strain tensor
  • 1.5. Polar decomposition
  • Pure stretch and rotation
  • Euler-Almansi strain tensor
  • 1.6. Rigid body transformation
  • 2.. Tangential Homogeneous Transformation
  • 2.1. Deformation gradient
  • 2.2. Homogeneous transformations of elements
  • Transport of vectors, volume deformation, and area deformation
  • Stretches
  • Strain
  • 2.3. Displacement and gradient
  • Material displacement gradient
  • Spatial displacement gradient
  • Curvilinear coordinate system
  • 3.. Infinitesimal Transformation
  • 3.1. Tensor notions relating to infinitesimal transformations
  • 3.2. Compatibility conditions
  • 3.3. Rigid body transformation
  • Exercises
  • Chapter 4. Kinematics of Continua
  • 1.. Lagrangian Kinematics
  • 1.1. Homogeneous transformation motion
  • 1.2. General motion and gradient
  • 2.. Eulerian Kinematics
  • 2.1. Homogeneous transformation motion
  • Velocity field
  • Material derivative of a vector
  • Material derivative of a volume
  • Eulerian rates
  • 2.2. General motion and velocity gradient
  • Velocity gradient tensor and Eulerian rates
  • Lagrangian and Eulerian strain tensors
  • Rate of rotation
  • Decomposition of motion
  • 2.3. Rigid body motion
  • 3.. Material Derivatives of Circulation, Flux, and Volume
  • 3.1. About the particle derivative
  • Physical quantity
  • Vector field
  • Tensor field
  • 3.2. Material derivative of circulation
  • 3.3. Material derivative of flux
  • 3.4. Material derivative of volume integral
  • Lagrangian and Eulerian approaches
  • Proper motion case
  • Exercises
  • Chapter 5. Fundamental Laws; Principle of Virtual Work
  • 1.. Conservation of Mass and Continuity Equation
  • 1.1. Axiom of mass conservation
  • 1.2. Continuity equation
  • Continuity equation in the Lagrangian description
  • Continuity equation in the Eulerian description
  • Mass flow rate
  • 1.3. Material derivative of integral of mass density
  • 1.4. Isochoric motion, steady and irrotational flows
  • Isochoric motion
  • Steady flow
  • Steady isochoric flow
  • Irrotational flow
  • Isochoric irrotational flow
  • 2.. Fundamental Laws of Dynamics
  • 2.1. Body forces and surface forces
  • 2.2. Principles of linear momentum and moment of momentum
  • 2.3. Cauchy's stress tensor
  • 2.4. Cauchy's stress tensor and principles of dynamics
  • Linear momentum principle and equilibrium equations
  • Moment of momentum principle
  • The generalized Cauchy's theorem
  • Poisson's theorem
  • 3.. Theorem of Kinetic Energy
  • 3.1. Theorem of kinetic energy in the Eulerian description
  • 3.2. Theorem of kinetic energy in the Lagrangian description
  • 4.. Study of Stresses
  • 4.1. Reciprocity of stresses
  • 4.2. Principal stresses
  • 4.3. Stress invariants; deviator
  • 4.4. Stress quadric of Cauchy and Lame stress ellipsoid
  • 4.5. Geometrical constructions and Mohr's circles
  • (Mohr's) stress plane
  • Stress vector and plane of Mohr
  • Description of Mohr's circles
  • Particular stresses
  • 5.. Principle of Virtual Work
  • 5.1. Preliminary recalls
  • 5.2. Rigid body motion
  • 5.3. Expressions of virtual power (and virtual work)
  • 5.4. Principle of virtual work
  • 6.. Thermomechanics and Balance Equations
  • 6.1. Balance equation
  • Proper motion
  • Material domain
  • Fixed domain
  • 6.2. First principle of thermodynamics
  • Principle
  • Balance equations and local forms
  • Potential energy of body forces
  • Internal energy and balance equation
  • 6.3. Second principle of thermodynamics
  • Principle
  • Clausius-Duhem inequality
  • Dissipation and reversibility
  • 6.4. Conclusion and constitutive equations
  • Exercises
  • Chapter 6. Linear Elasticity
  • 1.. Elasticity and Tests
  • 2.. Generalized Hooke's Law in Linear Elasticity
  • 2.1. Generalized Hooke's law
  • 2.2. Quadratic forms and strain energy function
  • 2.3. Isotropic material and Lame coefficients
  • Constitutive equations
  • Young's modulus and Poisson's ratio
  • Bulk modulus
  • Shear modulus
  • Hooke's law's expression in a general coordinate system
  • Navier's equations of motion
  • 3.. Equations and Principles in Elastostatics
  • 3.1. Navier's equation; the Beltrami equations of compatibility
  • 3.2. Principle of superposition
  • 3.3. Saint-Venant's principle
  • 4.. Classical Problems
  • 4.1. Plane problems
  • Plane stress problems
  • Plane strain problems
  • 4.2. Classical problems in elastostatics
  • Uniaxial stresses
  • Torsion of a circular cylinder body
  • Torsion of cylindrical shafts
  • Exercises
  • Summary of Formulae
  • Bibliography
  • Glossary of Symbols
  • Index