|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
4867923 |
003 |
ICU |
005 |
20040812161400.0 |
008 |
030114s2002 enka b 001 0 eng |
015 |
|
|
|a GBA3-05649
|
020 |
|
|
|a 1860943187
|
040 |
|
|
|a UKM
|c UKM
|d OrLoB-B
|d OCoLC
|
082 |
0 |
4 |
|a 515.353
|2 21
|
100 |
1 |
|
|a Movchan, A. B.
|q (Alexander B.)
|0 http://id.loc.gov/authorities/names/n95054171
|1 http://viaf.org/viaf/34710218
|
245 |
1 |
0 |
|a Asymptotic models of fields in dilute and densely packed composites /
|c A.B. Movchan, N.V. Movchan, C.G. Poulton.
|
260 |
|
|
|a London :
|b Imperial College Press,
|c c2002.
|
300 |
|
|
|a xi, 190 p. :
|b ill. ;
|c 24 cm.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/n
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/nc
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g Ch. 1.
|t Long and close range interaction within elastic structures --
|g 1.1.
|t Dilute composite structures. Scalar problems --
|g 1.1.1.
|t An elementary example. Motivation --
|g 1.1.2.
|t Asymptotic algorithm involving a boundary layer --
|g 1.1.3.
|t The dipole matrix --
|g 1.1.4.
|t Dipole matrix for a 2D void in an infinite plane --
|g 1.1.5.
|t Dipole matrices for inclusions --
|g 1.1.6.
|t A note on homogenization of dilute periodic structures --
|g 1.2.
|t Dipole fields in vector problems of linear elasticity --
|g 1.2.1.
|t Definitions and governing equations --
|g 1.2.2.
|t Physical interpretation --
|g 1.2.3.
|t Evaluation of the elements of the dipole matrix --
|g 1.2.4.
|t Examples --
|g 1.2.5.
|t The energy equivalent voids --
|g 1.3.
|t Circular elastic inclusions --
|g 1.3.1.
|t Inclusions with perfect bonding at the interface --
|g 1.3.2.
|t Dipole tensors for imperfectly bonded inclusions --
|g 1.4.
|t Close-range contact between elastic inclusions --
|g 1.4.1.
|t Governing equations --
|g 1.4.2.
|t Complex potentials --
|g 1.4.3.
|t Analysis for two circular elastic inclusions --
|g 1.4.4.
|t Square array of circular inclusions --
|g 1.4.5.
|t Integral approximation for the multipole coefficients. Inclusions close to touching --
|g 1.5.
|t Discrete lattice approximations --
|g 1.5.1.
|t Illustrative one-dimensional example --
|g 1.5.2.
|t Two-dimensional array of obstacles --
|g Ch. 2.
|t Dipole tensors in spectral problems of elasticity --
|g 2.1.
|t Asymptotic behaviour of fields near the vertex of a thin conical inclusion --
|g 2.1.1.
|t Spectral problem on a unit sphere --
|g 2.1.2.
|t Boundary layer solution --
|g 2.1.3.
|t Stress singularity exponent [Lambda][subscript 2] --
|g 2.2.
|t Imperfect interface. "Coated" conical inclusion --
|g 2.2.1.
|t Formulation of the problem --
|g 2.2.2.
|t Boundary layer solution --
|g 2.2.3.
|t Stress singularity exponent [Lambda][subscript 2] --
|g 2.2.4.
|t Some examples. Discussion and conclusions --
|g Ch. 3.
|t Multipole methods and homogenisation in two-dimensions --
|g 3.1.
|t The method of Rayleigh for static problems --
|g 3.1.1.
|t The multipole expansion and effective properties --
|g 3.1.2.
|t Solution to the static problem --
|g 3.2.
|t The spectral problem --
|g 3.2.1.
|t Formulation and Bloch waves --
|g 3.2.2.
|t The dynamic multipole method --
|g 3.2.3.
|t The dynamic lattice sums --
|g 3.2.4.
|t The integral equation and the Rayleigh identity --
|g 3.2.5.
|t The dipole approximation --
|g 3.3.
|t The singularly perturbed problem and non-commuting limits --
|g 3.3.1.
|t The Neumann problem and non-commuting limits --
|g 3.3.2.
|t The Dirichlet problem and source neutrality --
|g 3.4.
|t Non-commuting limits for the effective properties --
|g 3.5.
|t Elastic waves in doubly-periodic media --
|g 3.5.1.
|t Governing equations --
|g 3.5.2.
|t Convergence of the Rayleigh matrix --
|g 3.5.3.
|t Numerical results and comments --
|g 3.6.
|t Concluding remarks.
|
650 |
|
0 |
|a Differential equations, Partial
|x Asymptotic theory.
|0 http://id.loc.gov/authorities/subjects/sh85037913
|
650 |
|
7 |
|a Differential equations, Partial
|x Asymptotic theory.
|2 fast
|0 http://id.worldcat.org/fast/fst00893485
|
700 |
1 |
|
|a Movchan, N. V.
|q (Nataliya V.)
|0 http://id.loc.gov/authorities/names/n95054177
|1 http://viaf.org/viaf/7640571
|
700 |
1 |
|
|a Poulton, C. G.
|q (Chris G.)
|0 http://id.loc.gov/authorities/names/nb2003009410
|1 http://viaf.org/viaf/76568898
|
901 |
|
|
|a ToCBNA
|
903 |
|
|
|a HeVa
|
035 |
|
|
|a (OCoLC)51481893
|
929 |
|
|
|a cat
|
999 |
f |
f |
|i 84841b06-8ae0-551d-904d-07c26505a71f
|s 6465a1dc-10d4-5cf6-80e9-96ebe961eda6
|
928 |
|
|
|t Library of Congress classification
|a TA418.9.C6M68 2002
|l ASR
|c ASR-SciASR
|i 4572687
|
927 |
|
|
|t Library of Congress classification
|a TA418.9.C6M68 2002
|l ASR
|c ASR-SciASR
|e CRERAR
|b 63841545
|i 7449234
|