Asymptotic models of fields in dilute and densely packed composites /

Saved in:
Bibliographic Details
Author / Creator:Movchan, A. B. (Alexander B.)
Imprint:London : Imperial College Press, c2002.
Description:xi, 190 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4867923
Hidden Bibliographic Details
Other authors / contributors:Movchan, N. V. (Nataliya V.)
Poulton, C. G. (Chris G.)
ISBN:1860943187
Notes:Includes bibliographical references and index.

MARC

LEADER 00000cam a2200000 a 4500
001 4867923
003 ICU
005 20040812161400.0
008 030114s2002 enka b 001 0 eng
015 |a GBA3-05649 
020 |a 1860943187 
040 |a UKM  |c UKM  |d OrLoB-B  |d OCoLC 
082 0 4 |a 515.353  |2 21 
100 1 |a Movchan, A. B.  |q (Alexander B.)  |0 http://id.loc.gov/authorities/names/n95054171  |1 http://viaf.org/viaf/34710218 
245 1 0 |a Asymptotic models of fields in dilute and densely packed composites /  |c A.B. Movchan, N.V. Movchan, C.G. Poulton. 
260 |a London :  |b Imperial College Press,  |c c2002. 
300 |a xi, 190 p. :  |b ill. ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
504 |a Includes bibliographical references and index. 
505 0 0 |g Ch. 1.  |t Long and close range interaction within elastic structures --  |g 1.1.  |t Dilute composite structures. Scalar problems --  |g 1.1.1.  |t An elementary example. Motivation --  |g 1.1.2.  |t Asymptotic algorithm involving a boundary layer --  |g 1.1.3.  |t The dipole matrix --  |g 1.1.4.  |t Dipole matrix for a 2D void in an infinite plane --  |g 1.1.5.  |t Dipole matrices for inclusions --  |g 1.1.6.  |t A note on homogenization of dilute periodic structures --  |g 1.2.  |t Dipole fields in vector problems of linear elasticity --  |g 1.2.1.  |t Definitions and governing equations --  |g 1.2.2.  |t Physical interpretation --  |g 1.2.3.  |t Evaluation of the elements of the dipole matrix --  |g 1.2.4.  |t Examples --  |g 1.2.5.  |t The energy equivalent voids --  |g 1.3.  |t Circular elastic inclusions --  |g 1.3.1.  |t Inclusions with perfect bonding at the interface --  |g 1.3.2.  |t Dipole tensors for imperfectly bonded inclusions --  |g 1.4.  |t Close-range contact between elastic inclusions --  |g 1.4.1.  |t Governing equations --  |g 1.4.2.  |t Complex potentials --  |g 1.4.3.  |t Analysis for two circular elastic inclusions --  |g 1.4.4.  |t Square array of circular inclusions --  |g 1.4.5.  |t Integral approximation for the multipole coefficients. Inclusions close to touching --  |g 1.5.  |t Discrete lattice approximations --  |g 1.5.1.  |t Illustrative one-dimensional example --  |g 1.5.2.  |t Two-dimensional array of obstacles --  |g Ch. 2.  |t Dipole tensors in spectral problems of elasticity --  |g 2.1.  |t Asymptotic behaviour of fields near the vertex of a thin conical inclusion --  |g 2.1.1.  |t Spectral problem on a unit sphere --  |g 2.1.2.  |t Boundary layer solution --  |g 2.1.3.  |t Stress singularity exponent [Lambda][subscript 2] --  |g 2.2.  |t Imperfect interface. "Coated" conical inclusion --  |g 2.2.1.  |t Formulation of the problem --  |g 2.2.2.  |t Boundary layer solution --  |g 2.2.3.  |t Stress singularity exponent [Lambda][subscript 2] --  |g 2.2.4.  |t Some examples. Discussion and conclusions --  |g Ch. 3.  |t Multipole methods and homogenisation in two-dimensions --  |g 3.1.  |t The method of Rayleigh for static problems --  |g 3.1.1.  |t The multipole expansion and effective properties --  |g 3.1.2.  |t Solution to the static problem --  |g 3.2.  |t The spectral problem --  |g 3.2.1.  |t Formulation and Bloch waves --  |g 3.2.2.  |t The dynamic multipole method --  |g 3.2.3.  |t The dynamic lattice sums --  |g 3.2.4.  |t The integral equation and the Rayleigh identity --  |g 3.2.5.  |t The dipole approximation --  |g 3.3.  |t The singularly perturbed problem and non-commuting limits --  |g 3.3.1.  |t The Neumann problem and non-commuting limits --  |g 3.3.2.  |t The Dirichlet problem and source neutrality --  |g 3.4.  |t Non-commuting limits for the effective properties --  |g 3.5.  |t Elastic waves in doubly-periodic media --  |g 3.5.1.  |t Governing equations --  |g 3.5.2.  |t Convergence of the Rayleigh matrix --  |g 3.5.3.  |t Numerical results and comments --  |g 3.6.  |t Concluding remarks. 
650 0 |a Differential equations, Partial  |x Asymptotic theory.  |0 http://id.loc.gov/authorities/subjects/sh85037913 
650 7 |a Differential equations, Partial  |x Asymptotic theory.  |2 fast  |0 http://id.worldcat.org/fast/fst00893485 
700 1 |a Movchan, N. V.  |q (Nataliya V.)  |0 http://id.loc.gov/authorities/names/n95054177  |1 http://viaf.org/viaf/7640571 
700 1 |a Poulton, C. G.  |q (Chris G.)  |0 http://id.loc.gov/authorities/names/nb2003009410  |1 http://viaf.org/viaf/76568898 
901 |a ToCBNA 
903 |a HeVa 
035 |a (OCoLC)51481893 
929 |a cat 
999 f f |i 84841b06-8ae0-551d-904d-07c26505a71f  |s 6465a1dc-10d4-5cf6-80e9-96ebe961eda6 
928 |t Library of Congress classification  |a TA418.9.C6M68 2002  |l ASR  |c ASR-SciASR  |i 4572687 
927 |t Library of Congress classification  |a TA418.9.C6M68 2002  |l ASR  |c ASR-SciASR  |e CRERAR  |b 63841545  |i 7449234