Applied partial differential equations : an introduction/

Saved in:
Bibliographic Details
Author / Creator:Jeffrey, Alan.
Imprint:Amsterdam ; San Diego : Academic Press, c2003.
Description:xiv, 394 p. : ill. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4869542
Hidden Bibliographic Details
ISBN:0123822521
Notes:Includes bibliographical references (p. 387-388) and index.

MARC

LEADER 00000cam a22000004a 4500
001 4869542
003 ICU
005 20040330123800.0
008 020626s2003 ne a b 001 0 eng
010 |a  2002109015 
020 |a 0123822521 
040 |a DLC  |c DLC  |d DLC  |d OCoLC  |d OrLoB-B 
042 |a pcc 
050 0 0 |a QA377  |b .J44 2003 
082 0 0 |a 515/.353  |2 21 
100 1 |a Jeffrey, Alan.  |0 http://id.loc.gov/authorities/names/n50028417  |1 http://viaf.org/viaf/8091035 
245 1 0 |a Applied partial differential equations :  |b an introduction/  |c Alan Jeffrey. 
260 |a Amsterdam ;  |a San Diego :  |b Academic Press,  |c c2003. 
300 |a xiv, 394 p. :  |b ill. ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a unmediated  |b n  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/n 
338 |a volume  |b nc  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/nc 
504 |a Includes bibliographical references (p. 387-388) and index. 
505 0 0 |g Ch. 1.  |t Introduction to Partial Differential Equations --  |g 1.1.  |t What Is a Partial Differential Equation? --  |g 1.2.  |t Representative Problems Leading to PDEs, Initial and Boundary Conditions --  |g 1.3.  |t What Is a Solution of a PDE? --  |g 1.4.  |t The Cauchy Problem --  |g 1.5.  |t Well-Posed and Improperly Posed Problems --  |g 1.6.  |t Coordinate Systems, Vector Operators, and Integral Theorems --  |g Ch. 2.  |t Linear and Nonlinear First-Order Equations and Shocks --  |g 2.1.  |t Linear and Semilinear Equations in Two Independent Variables --  |g 2.2.  |t Quasi-Linear Equations in Two Independent Variables --  |g 2.3.  |t Propagation of Weak Discontinuities by First-Order Equations --  |g 2.4.  |t Discontinuous Solutions, Conservation Laws, and Shocks --  |g Ch. 3.  |t Classification of Equations and Reduction to Standard Form --  |g 3.1.  |t Classification of PDEs, and Their Reduction to Standard Form --  |g 3.2.  |t Classification of Second-Order PDE in Many Independent Variables --  |g 3.3.  |t Well-Posed Problems for Hyperbolic, Parabolic, and Elliptic Partial Differential Equations --  |g Ch. 4.  |t Linear Wave Propagation in One or More Space Dimensions --  |g 4.1.  |t Linear Waves and the Wave Equation --  |g 4.2.  |t The D'Alembert Solution and the Telegraph Equation --  |g 4.3.  |t Mixed Initial and Boundary Value Problems for the Wave Equation --  |g 4.4.  |t The Poisson Formula for the Wave Equation, the Method of Descent, and the Difference between Waves in Two and Three Space Dimensions --  |g 4.5.  |t Kirchhoff's Solution of the Wave Equation in Three Space Variables and Another Representation of Huygens' Principle --  |g 4.6.  |t Uniqueness of Solutions of the Wave Equation --  |g Ch. 5.  |t Fourier Series, Legendre and Bessel Functions --  |g 5.1.  |t An Introduction to Fourier Series --  |g 5.2.  |t Major Results Involving Fourier Series --  |g 5.3.  |t A Summary of the Properties of the Legendre and Bessel Differential Equations --  |g Ch. 6.  |t Background to Separation of Variables with Applications --  |g 6.1.  |t A General Approach to Separation of Variables --  |g 6.2.  |t Properties of Eigenfunctions and Eigenvalues --  |g 6.3.  |t Applications of Separation of Variables --  |g Ch. 7.  |t General Results for Linear Elliptic and Parabolic Equations --  |g 7.1.  |t General Results for Elliptic and Parabolic Equations --  |g 7.2.  |t Laplace Equation --  |g 7.3.  |t The Heat Equation --  |g 7.4.  |t Self-Similarity Solutions --  |g 7.5.  |t Fundamental Solution of the Heat Equation --  |g 7.6.  |t Duhamel's Principle --  |g Ch. 8.  |t Hyperbolic Systems, Riemann Invariants, Simple Waves, and Compound Riemann Problems --  |g 8.1.  |t Properly Determined First-Order Systems of Equations --  |g 8.2.  |t Hyperbolicity and Characteristic Curves --  |g 8.3.  |t Riemann Invariants --  |g 8.4.  |t Simple Waves --  |g 8.5.  |t Shocks and the Riemann Problem. 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 7 |a Differential equations, Partial.  |2 fast  |0 http://id.worldcat.org/fast/fst00893484 
901 |a ToCBNA 
903 |a HeVa 
035 |a (OCoLC)50652909 
929 |a cat 
999 f f |i b9afb1da-dadf-545a-a420-6bc383229ac1  |s 48ec62e3-6781-50c4-9cd1-06c283fba0c3 
928 |t Library of Congress classification  |a QA377 .J44 2003  |l Eck  |c Eck-Eck  |i 4572985 
927 |t Library of Congress classification  |a QA377 .J44 2003  |l Eck  |c Eck-Eck  |b 63840451  |i 7451308