Ultrametric Banach algebras /

Saved in:
Bibliographic Details
Author / Creator:Escassut, Alain.
Imprint:Singapore ; River Edge, NJ : World Scientific, 2003.
Description:xiii, 275 p. ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4891406
Hidden Bibliographic Details
ISBN:9812381945
Notes:Includes bibliographical references (p. 265-267) and index.
Description
Summary:In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras.In uniform Banach algebras, the spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebras, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{{t}} x], the absolute values extending the Gauss norm from K{{t}} to A are defined by the elements of the Shilov boundary of A.
Physical Description:xiii, 275 p. ; 24 cm.
Bibliography:Includes bibliographical references (p. 265-267) and index.
ISBN:9812381945