Genetic transformation of plants /
Saved in:
Imprint: | Berlin ; New York : Springer, c2003. |
---|---|
Description: | xix, 202 p. : 21 fig. (4 col.), 11 tab. ; 25 cm. |
Language: | English |
Series: | Molecular methods of plant analysis, 1619-5221 ; v. 23 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4911657 |
Table of Contents:
- 1. Exclusive Rights in Life: Biotechnology, Genetic Manipulation, and Intellectual Property Rights
- 1.1. Introduction
- 1.2. Biotechnological Innovation
- 1.2.1. Physical Innovations
- 1.2.1.1. DNA and Protein Molecules
- 1.2.1.2. Cells
- 1.2.1.3. Whole Organisms
- 1.2.2. Information and Other Intangibles
- 1.2.2.1. DNA Sequences and Cells
- 1.2.2.2. Processes Using Biological Matter
- 1.2.2.3. Bioinformatics
- 1.2.3. Summary
- 1.3. Introduction to Intellectual Property Rights
- 1.3.1. Exclusive Rights vs. Rights to Things
- 1.3.2. Property and Intellectual Property Rights
- 1.3.3. Trade Secrets
- 1.3.3.1. Subject Matter
- 1.3.3.2. Requirements
- 1.3.4. Patents
- 1.3.4.1. Subject Matter
- 1.3.4.1.1. Invention vs. Discovery
- 1.3.4.1.2. Exclusions
- 1.3.4.2. Requirements
- 1.3.4.2.1. Substantive Criteria
- 1.3.4.2.1.1. Novelty
- 1.3.4.2.1.2. Inventive Step (Nonobviousness)
- 1.3.4.2.1.3. Industrial Application (Utility)
- 1.3.4.2.2. Procedural Criterion: Disclosure
- 1.3.4.3. Remedies
- 1.3.5. Copyright and Database Protection
- 1.3.5.1. Subject Matter
- 1.3.5.2. Requirements
- 1.3.5.3. Remedies
- 1.3.6. Plant Variety Protection
- 1.3.6.1. Subject Matter
- 1.3.6.2. Requirements
- 1.4. Challenges
- 1.4.1. Incentive vs. Access
- 1.4.1.1. Justification for Property Rights
- 1.4.1.2. Economic Reality
- 1.4.2. Fairness to Providers of Biological Matter
- 1.4.2.1. Rights to Biological Matter
- 1.5. Conclusion
- References
- 2. Agrobacterium rhizogenes-Mediated Transformation of Plants
- 2.1. Introduction
- 2.2. Aspects Influencing A. rhizogenes Transformation Efficiency
- 2.2.1. Choice of A. rhizogenes Strain
- 2.2.2. Choice of Explant
- 2.2.3. Preparation of Bacterial Inoculum and Infection of Explants
- 2.2.4. Co-cultivation
- 2.3. Establishing the Transformed Nature of Hairy Roots
- 2.4. Cotransformation of Binary T-DNA
- 2.5. Propagation of Hairy Root Lines in Liquid Cultures
- 2.5.1. The Clonal Status of Hairy Roots
- 2.5.2. Stability of Long-Term Hairy Root Cultures
- 2.6. Regeneration of Plants from Hairy Roots
- 2.7. The Multi-Auto-Transformation (MAT) Vector System
- 2.8. Conclusions
- Protocol 1. Production of Transformed Hairy Roots
- Protocol 2. Plant Regeneration from Hairy Roots
- Protocol 3. Hairy Root Liquid Culture
- References
- 3. Transformation of Petunia hybrida by the Agrobacterium Suspension Drop Method
- 3.1. Introduction
- 3.2. Transformation
- 3.3. Analysis of Transformants
- 3.3.1. Screening Petunia Seedlings for Herbicide Resistance
- 3.3.2. Transmission of Basta Resistance Phenotype to T 2 Progeny
- 3.3.3. ß-Glucuronidase Assay
- 3.3.4. DNA Analysis
- 3.4. Conclusion
- References
- 4. Onion, Leek and Garlic Transformation by Co-cultivation with Agrobacterium
- 4.1. Introduction
- 4.1.1. Current Applications of Allium Transformation Technology
- 4.1.1.1. Physiological Studies
- 4.1.1.2. Herbicide Resistance
- 4.1.1.3. Antimicrobial Resistance
- 4.1.1.4. Insect Resistance
- 4.2. Onion Transformation Protocols
- 4.2.1. Transformation Using Antibiotic and Visual Selection
- 4.2.1.1. Bacterial Strain and Plasmids
- 4.2.1.2. Transformation Procedure (Modified from Eady et al. 2000
- 4.2.2. Transformation Using Herbicide Selection
- 4.2.2.1. Bacterial Strain and Plasmids
- 4.2.2.2. Transformation Procedure
- 4.2.3. Ex-Flasking and Growth in Containment
- 4.2.4. Transgene Detection
- 4.2.5. Transgene Expression and Stability
- 4.2.5.1. Visual Reporter Genes
- 4.2.5.2. Expression of Herbicide Resistance
- 4.2.5.3. Antisense Alliinase Gene Expression
- 4.3. Leek Transformation
- 4.4. Garlic Transformation Protocol
- 4.4.1. Bacterial Strain and Plasmids
- 4.4.2. Transformation Procedure
- 4.5. Concluding Remarks
- References
- 5. Electroporation Transformation of Barley
- 5.1. Introduction
- 5.2. Background of Electroporation Procedures
- 5.2.1. Pre- and Post-Electroporation Period
- 5.2.2. Electrical Variables
- 5.3. Culture and Electroporation of Barley Explants
- 5.3.1. Protoplasts
- 5.3.2. Microspores
- 5.3.3. Intact Tissues
- 5.3.3.1. Analysis and Inheritance of Transgenes in Electroporated Tissues
- 5.4. Conclusions and Future Perspectives
- References
- 6. Sorghum Transformation
- 6.1. Introduction
- 6.2. Sorghum Transformation Process and Optimization
- 6.2.1. Plant Materials and Transformation Systems
- 6.2.2. Transformation Via Microprojectile Bombardment
- 6.2.3. Agrobacterium-Mediated Transformation
- 6.3. Analysis of Transgenic Plants and the Progeny
- 6.3.1. Molecular Analysis of T 0 Plants
- 6.3.2. Foreign Gene Expression in T 0 Plants
- 6.3.3. Genetic and Molecular Analysis of the Progeny
- 6.4. Marker-Free Sorghum Transgenic Plants
- 6.4.1. Importance of Marker-Free Transgenics in Sorghum
- 6.4.2. Methods to Eliminate Markers from Transgenic Plants
- 6.4.3. Agrobacterium 2 T-DNA Co-Transformation System
- References
- 7. Transgenic Sunflower: PEG-Mediated Gene Transfer
- 7.1. Introduction
- 7.2. Genetic Variability and Transgenic Breeding
- 7.3. Gene Transfer Systems
- 7.3.1. PEG-Mediated Gene Transfer
- 7.3.1.1. Short DNA Molecule Uptake
- 7.3.1.2. Large DNA Molecule Uptake
- 7.4. Plant Regeneration
- 7.5. General Analytical Considerations
- 7.5.1. Molecular Analysis
- 7.5.1.1. DNA Extraction
- 7.5.1.2. Southern Hybridization
- 7.5.1.3. Polymerase Chain Reaction
- 7.5.1.4. Random Amplified Polymorphic DNA
- 7.5.2. Biochemical Analysis
- 7.5.2.1. Multiple Molecular Forms of Enzymes
- 7.5.2.2. Enzymatic Assay
- 7.5.3. Cytogenetic Analysis
- 7.5.3.1. Flow Cytometric Analysis
- 7.5.3.2. Mitotic and Meiotic Cell Analysis
- 7.5.3.3. In Situ Hybridization
- 7.5.4. Morphological Analysis
- 7.6. Conclusions and Future Perspectives
- References
- 8. Transformation of Norway Spruce (Picea abies) by Particle Bombardment
- 8.1. Introduction
- 8.2. Types of Particle Accelerator
- 8.3. Transformation of Embryogenic Cultures
- 8.3.1. Transient Expression in Embryogenic Cultures
- 8.3.2. Production of Stably Transformed Cell Cultures and Transgenic Plants
- 8.3.3. Stability of Transgene Expression
- 8.3.4. Trends in Transgenic Plant Production
- 8.4. Transformation of Pollen
- 8.4.1. The Reproductive Biology of Norway Spruce
- 8.4.2. Transient Expression in Pollen
- 8.4.3. Development of Controlled Pollination Techniques for Bombarded Pollen
- 8.5. Applications of Transgenic Norway Spruce in Research
- 8.5.1. Genes Regulating Embryogenesis
- 8.5.2. Genes with Similarity to Defense Genes
- 8.6. Prospects for Transgenic Norway Spruce in Practical Forestry
- References
- 9. WHISKERS-Mediated Transformation of Maize
- 9.1. Introduction
- 9.2. Preparation of Purified DNA Fragments
- 9.3. Establishment and Maintenance of Embryogenic Suspension Cultures
- 9.4. DNA Delivery via WHISKERS
- 9.5. Transgene Copy Number Estimation
- 9.6. Regeneration of Transgenic Plants and Progeny
- 9.7. Conclusions and Future Perspectives
- References
- 10. Genetic Transformation of Soybean with Biolistics
- 10.1. Introduction
- 10.2. Tissue Culture and Plant Regeneration
- 10.2.1. Genotype Specificity
- 10.2.2. Initiation and Repetitive Proliferation of Somatic Embryogenic Cultures
- 10.2.3. Embryo Histodifferentiation and Maturation
- 10.2.4. Germination, Conversion and Plant Fertility
- 10.3. Transformation
- 10.3.1. Gene Delivery
- 10.3.2. Target Tissue Optimization
- 10.3.3. Selection
- 10.3.4. Transgenic Plant Recovery
- 10.4. Conclusions
- 10.5. Protocol
- 10.5.1. Induction and Maintenance of Proliferative Embryogenic Cultures
- 10.5.2. Transformation
- 10.5.3. Selection
- 10.5.4. Plant Regeneration
- References
- 11. Genotoxic Effects of Tungsten Microparticles Under Conditionsof Biolistic Transformation
- 11.1. Introduction
- 11.2. Biological Significance of Tungsten
- 11.2.1. Early Observations on Biological Effects of Tungsten
- 11.2.2. Catalytic Activity of Simple Tungsten Compounds
- 11.2.3. Tungstoenzymes
- 11.2.4. Tungsten-DNA Interaction
- 11.3. Tungsten Microparticles in Biotechnological Applications
- 11.3.1. Biolistic Transformation
- 11.3.1.1. An Overview
- 11.3.1.2. Technical Details
- 11.3.2. Biolistic Inoculation and Related Applications of Tungsten Particles
- 11.4. Assessment of Tungsten-Induced DNA Lesions
- 11.4.1. Electrophoretic Analysis of Tungsten-Damaged Plasmid DNA
- 11.4.2. A Modified TUNEL Method for Detection of Cellular DNA Fragmentation
- 11.5. Post-Bombardment Inhibition of Somatic Embryogenesis
- 11.6. Concluding Remarks
- References
- Subject Index