Genetic transformation of plants /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2003.
Description:xix, 202 p. : 21 fig. (4 col.), 11 tab. ; 25 cm.
Language:English
Series:Molecular methods of plant analysis, 1619-5221 ; v. 23
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4911657
Hidden Bibliographic Details
Other authors / contributors:Jackson, J. F. (John F.), 1935-
Linskens, H. F. (Hans F.), 1921-
ISBN:3540002928 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Exclusive Rights in Life: Biotechnology, Genetic Manipulation, and Intellectual Property Rights
  • 1.1. Introduction
  • 1.2. Biotechnological Innovation
  • 1.2.1. Physical Innovations
  • 1.2.1.1. DNA and Protein Molecules
  • 1.2.1.2. Cells
  • 1.2.1.3. Whole Organisms
  • 1.2.2. Information and Other Intangibles
  • 1.2.2.1. DNA Sequences and Cells
  • 1.2.2.2. Processes Using Biological Matter
  • 1.2.2.3. Bioinformatics
  • 1.2.3. Summary
  • 1.3. Introduction to Intellectual Property Rights
  • 1.3.1. Exclusive Rights vs. Rights to Things
  • 1.3.2. Property and Intellectual Property Rights
  • 1.3.3. Trade Secrets
  • 1.3.3.1. Subject Matter
  • 1.3.3.2. Requirements
  • 1.3.4. Patents
  • 1.3.4.1. Subject Matter
  • 1.3.4.1.1. Invention vs. Discovery
  • 1.3.4.1.2. Exclusions
  • 1.3.4.2. Requirements
  • 1.3.4.2.1. Substantive Criteria
  • 1.3.4.2.1.1. Novelty
  • 1.3.4.2.1.2. Inventive Step (Nonobviousness)
  • 1.3.4.2.1.3. Industrial Application (Utility)
  • 1.3.4.2.2. Procedural Criterion: Disclosure
  • 1.3.4.3. Remedies
  • 1.3.5. Copyright and Database Protection
  • 1.3.5.1. Subject Matter
  • 1.3.5.2. Requirements
  • 1.3.5.3. Remedies
  • 1.3.6. Plant Variety Protection
  • 1.3.6.1. Subject Matter
  • 1.3.6.2. Requirements
  • 1.4. Challenges
  • 1.4.1. Incentive vs. Access
  • 1.4.1.1. Justification for Property Rights
  • 1.4.1.2. Economic Reality
  • 1.4.2. Fairness to Providers of Biological Matter
  • 1.4.2.1. Rights to Biological Matter
  • 1.5. Conclusion
  • References
  • 2. Agrobacterium rhizogenes-Mediated Transformation of Plants
  • 2.1. Introduction
  • 2.2. Aspects Influencing A. rhizogenes Transformation Efficiency
  • 2.2.1. Choice of A. rhizogenes Strain
  • 2.2.2. Choice of Explant
  • 2.2.3. Preparation of Bacterial Inoculum and Infection of Explants
  • 2.2.4. Co-cultivation
  • 2.3. Establishing the Transformed Nature of Hairy Roots
  • 2.4. Cotransformation of Binary T-DNA
  • 2.5. Propagation of Hairy Root Lines in Liquid Cultures
  • 2.5.1. The Clonal Status of Hairy Roots
  • 2.5.2. Stability of Long-Term Hairy Root Cultures
  • 2.6. Regeneration of Plants from Hairy Roots
  • 2.7. The Multi-Auto-Transformation (MAT) Vector System
  • 2.8. Conclusions
  • Protocol 1. Production of Transformed Hairy Roots
  • Protocol 2. Plant Regeneration from Hairy Roots
  • Protocol 3. Hairy Root Liquid Culture
  • References
  • 3. Transformation of Petunia hybrida by the Agrobacterium Suspension Drop Method
  • 3.1. Introduction
  • 3.2. Transformation
  • 3.3. Analysis of Transformants
  • 3.3.1. Screening Petunia Seedlings for Herbicide Resistance
  • 3.3.2. Transmission of Basta Resistance Phenotype to T 2 Progeny
  • 3.3.3. ß-Glucuronidase Assay
  • 3.3.4. DNA Analysis
  • 3.4. Conclusion
  • References
  • 4. Onion, Leek and Garlic Transformation by Co-cultivation with Agrobacterium
  • 4.1. Introduction
  • 4.1.1. Current Applications of Allium Transformation Technology
  • 4.1.1.1. Physiological Studies
  • 4.1.1.2. Herbicide Resistance
  • 4.1.1.3. Antimicrobial Resistance
  • 4.1.1.4. Insect Resistance
  • 4.2. Onion Transformation Protocols
  • 4.2.1. Transformation Using Antibiotic and Visual Selection
  • 4.2.1.1. Bacterial Strain and Plasmids
  • 4.2.1.2. Transformation Procedure (Modified from Eady et al. 2000
  • 4.2.2. Transformation Using Herbicide Selection
  • 4.2.2.1. Bacterial Strain and Plasmids
  • 4.2.2.2. Transformation Procedure
  • 4.2.3. Ex-Flasking and Growth in Containment
  • 4.2.4. Transgene Detection
  • 4.2.5. Transgene Expression and Stability
  • 4.2.5.1. Visual Reporter Genes
  • 4.2.5.2. Expression of Herbicide Resistance
  • 4.2.5.3. Antisense Alliinase Gene Expression
  • 4.3. Leek Transformation
  • 4.4. Garlic Transformation Protocol
  • 4.4.1. Bacterial Strain and Plasmids
  • 4.4.2. Transformation Procedure
  • 4.5. Concluding Remarks
  • References
  • 5. Electroporation Transformation of Barley
  • 5.1. Introduction
  • 5.2. Background of Electroporation Procedures
  • 5.2.1. Pre- and Post-Electroporation Period
  • 5.2.2. Electrical Variables
  • 5.3. Culture and Electroporation of Barley Explants
  • 5.3.1. Protoplasts
  • 5.3.2. Microspores
  • 5.3.3. Intact Tissues
  • 5.3.3.1. Analysis and Inheritance of Transgenes in Electroporated Tissues
  • 5.4. Conclusions and Future Perspectives
  • References
  • 6. Sorghum Transformation
  • 6.1. Introduction
  • 6.2. Sorghum Transformation Process and Optimization
  • 6.2.1. Plant Materials and Transformation Systems
  • 6.2.2. Transformation Via Microprojectile Bombardment
  • 6.2.3. Agrobacterium-Mediated Transformation
  • 6.3. Analysis of Transgenic Plants and the Progeny
  • 6.3.1. Molecular Analysis of T 0 Plants
  • 6.3.2. Foreign Gene Expression in T 0 Plants
  • 6.3.3. Genetic and Molecular Analysis of the Progeny
  • 6.4. Marker-Free Sorghum Transgenic Plants
  • 6.4.1. Importance of Marker-Free Transgenics in Sorghum
  • 6.4.2. Methods to Eliminate Markers from Transgenic Plants
  • 6.4.3. Agrobacterium 2 T-DNA Co-Transformation System
  • References
  • 7. Transgenic Sunflower: PEG-Mediated Gene Transfer
  • 7.1. Introduction
  • 7.2. Genetic Variability and Transgenic Breeding
  • 7.3. Gene Transfer Systems
  • 7.3.1. PEG-Mediated Gene Transfer
  • 7.3.1.1. Short DNA Molecule Uptake
  • 7.3.1.2. Large DNA Molecule Uptake
  • 7.4. Plant Regeneration
  • 7.5. General Analytical Considerations
  • 7.5.1. Molecular Analysis
  • 7.5.1.1. DNA Extraction
  • 7.5.1.2. Southern Hybridization
  • 7.5.1.3. Polymerase Chain Reaction
  • 7.5.1.4. Random Amplified Polymorphic DNA
  • 7.5.2. Biochemical Analysis
  • 7.5.2.1. Multiple Molecular Forms of Enzymes
  • 7.5.2.2. Enzymatic Assay
  • 7.5.3. Cytogenetic Analysis
  • 7.5.3.1. Flow Cytometric Analysis
  • 7.5.3.2. Mitotic and Meiotic Cell Analysis
  • 7.5.3.3. In Situ Hybridization
  • 7.5.4. Morphological Analysis
  • 7.6. Conclusions and Future Perspectives
  • References
  • 8. Transformation of Norway Spruce (Picea abies) by Particle Bombardment
  • 8.1. Introduction
  • 8.2. Types of Particle Accelerator
  • 8.3. Transformation of Embryogenic Cultures
  • 8.3.1. Transient Expression in Embryogenic Cultures
  • 8.3.2. Production of Stably Transformed Cell Cultures and Transgenic Plants
  • 8.3.3. Stability of Transgene Expression
  • 8.3.4. Trends in Transgenic Plant Production
  • 8.4. Transformation of Pollen
  • 8.4.1. The Reproductive Biology of Norway Spruce
  • 8.4.2. Transient Expression in Pollen
  • 8.4.3. Development of Controlled Pollination Techniques for Bombarded Pollen
  • 8.5. Applications of Transgenic Norway Spruce in Research
  • 8.5.1. Genes Regulating Embryogenesis
  • 8.5.2. Genes with Similarity to Defense Genes
  • 8.6. Prospects for Transgenic Norway Spruce in Practical Forestry
  • References
  • 9. WHISKERS-Mediated Transformation of Maize
  • 9.1. Introduction
  • 9.2. Preparation of Purified DNA Fragments
  • 9.3. Establishment and Maintenance of Embryogenic Suspension Cultures
  • 9.4. DNA Delivery via WHISKERS
  • 9.5. Transgene Copy Number Estimation
  • 9.6. Regeneration of Transgenic Plants and Progeny
  • 9.7. Conclusions and Future Perspectives
  • References
  • 10. Genetic Transformation of Soybean with Biolistics
  • 10.1. Introduction
  • 10.2. Tissue Culture and Plant Regeneration
  • 10.2.1. Genotype Specificity
  • 10.2.2. Initiation and Repetitive Proliferation of Somatic Embryogenic Cultures
  • 10.2.3. Embryo Histodifferentiation and Maturation
  • 10.2.4. Germination, Conversion and Plant Fertility
  • 10.3. Transformation
  • 10.3.1. Gene Delivery
  • 10.3.2. Target Tissue Optimization
  • 10.3.3. Selection
  • 10.3.4. Transgenic Plant Recovery
  • 10.4. Conclusions
  • 10.5. Protocol
  • 10.5.1. Induction and Maintenance of Proliferative Embryogenic Cultures
  • 10.5.2. Transformation
  • 10.5.3. Selection
  • 10.5.4. Plant Regeneration
  • References
  • 11. Genotoxic Effects of Tungsten Microparticles Under Conditionsof Biolistic Transformation
  • 11.1. Introduction
  • 11.2. Biological Significance of Tungsten
  • 11.2.1. Early Observations on Biological Effects of Tungsten
  • 11.2.2. Catalytic Activity of Simple Tungsten Compounds
  • 11.2.3. Tungstoenzymes
  • 11.2.4. Tungsten-DNA Interaction
  • 11.3. Tungsten Microparticles in Biotechnological Applications
  • 11.3.1. Biolistic Transformation
  • 11.3.1.1. An Overview
  • 11.3.1.2. Technical Details
  • 11.3.2. Biolistic Inoculation and Related Applications of Tungsten Particles
  • 11.4. Assessment of Tungsten-Induced DNA Lesions
  • 11.4.1. Electrophoretic Analysis of Tungsten-Damaged Plasmid DNA
  • 11.4.2. A Modified TUNEL Method for Detection of Cellular DNA Fragmentation
  • 11.5. Post-Bombardment Inhibition of Somatic Embryogenesis
  • 11.6. Concluding Remarks
  • References
  • Subject Index