SAS for forecasting time series /
Saved in:
Author / Creator: | Brocklebank, John Clare. |
---|---|
Edition: | 2nd ed. |
Imprint: | Cary, N.C. : SAS Institute Inc. ; [S.l.] : John Wiley, c2003. |
Description: | x, 398 p. : ill. ; 28 cm. |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4915541 |
Table of Contents:
- Preface
- Acknowledgments
- Chapter 1. Overview of Time Series
- 1.1. Introduction
- 1.2. Analysis Methods and SAS/ETS Software
- 1.2.1. Options
- 1.2.2. How SAS/ETS Software Procedures Interrelate
- 1.3. Simple Models: Regression
- 1.3.1. Linear Regression
- 1.3.2. Highly Regular Seasonality
- 1.3.3. Regression with Transformed Data
- Chapter 2. Simple Models: Autoregression
- 2.1. Introduction
- 2.1.1. Terminology and Notation
- 2.1.2. Statistical Background
- 2.2. Forecasting
- 2.2.1. Forecasting with PROC ARIMA
- 2.2.2. Backshift Notation B for Time Series
- 2.2.3. Yule-Walker Equations for Covariances
- 2.3. Fitting an AR Model in PROC REG
- Chapter 3. The General ARIMA Model
- 3.1. Introduction
- 3.1.1. Statistical Background
- 3.1.2. Terminology and Notation
- 3.2. Prediction
- 3.2.1. One-Step-Ahead Predictions
- 3.2.2. Future Predictions
- 3.3. Model Identification
- 3.3.1. Stationarity and Invertibility
- 3.3.2. Time Series Identification
- 3.3.3. Chi-Square Check of Residuals
- 3.3.4. Summary of Model Identification
- 3.4. Examples and Instructions
- 3.4.1. IDENTIFY Statement for Series 1-8
- 3.4.2. Example: Iron and Steel Export Analysis
- 3.4.3. Estimation Methods Used in PROC ARIMA
- 3.4.4. ESTIMATE Statement for Series 8
- 3.4.5. Nonstationary Series
- 3.4.6. Effect of Differencing on Forecasts
- 3.4.7. Examples: Forecasting IBM Series and Silver Series
- 3.4.8. Models for Nonstationary Data
- 3.4.9. Differencing to Remove a Linear Trend
- 3.4.10. Other Identification Techniques
- 3.5. Summary
- Chapter 4. The ARIMA Model: Introductory Applications
- 4.1. Seasonal Time Series
- 4.1.1. Introduction to Seasonal Modeling
- 4.1.2. Model Identification
- 4.2. Models with Explanatory Variables
- 4.2.1. Case 1: Regression with Time Series Errors
- 4.2.2. Case 1A: Intervention
- 4.2.3. Case 2: Simple Transfer Function
- 4.2.4. Case 3: General Transfer Function
- 4.2.5. Case 3A: Leading Indicators
- 4.2.6. Case 3B: Intervention
- 4.3. Methodology and Example
- 4.3.1. Case 1: Regression with Time Series Errors
- 4.3.2. Case 2: Simple Transfer Functions
- 4.3.3. Case 3: General Transfer Functions
- 4.3.4. Case 3B: Intervention
- 4.4. Further Examples
- 4.4.1. North Carolina Retail Sales
- 4.4.2. Construction Series Revisited
- 4.4.3. Milk Scare (Intervention)
- 4.4.4. Terrorist Attack
- Chapter 5. The ARIMA Model: Special Applications
- 5.1. Regression with Time Series Errors and Unequal Variances
- 5.1.1. Autoregressive Errors
- 5.1.2. Example: Energy Demand at a University
- 5.1.3. Unequal Variances
- 5.1.4. ARCH, GARCH, and IGARCH for Unequal Variances
- 5.2. Cointegration
- 5.2.1. Introduction
- 5.2.2. Cointegration and Eigenvalues
- 5.2.3. Impulse Response Function
- 5.2.4. Roots in Higher-Order Models
- 5.2.5. Cointegration and Unit Roots
- 5.2.6. An Illustrative Example
- 5.2.7. Estimating the Cointegrating Vector
- 5.2.8. Intercepts and More Lags
- 5.2.9. PROC VARMAX
- 5.2.10. Interpreting the Estimates
- 5.2.11. Diagnostics and Forecasts
- Chapter 6. State Space Modeling
- 6.1. Introduction
- 6.1.1. Some Simple Univariate Examples
- 6.1.2. A Simple Multivariate Example
- 6.1.3. Equivalence of State Space and Vector ARMA Models
- 6.2. More Examples
- 6.2.1. Some Univariate Examples
- 6.2.2. ARMA(1,1) of Dimension 2
- 6.3. PROC STATESPACE
- 6.3.1. State Vectors Determined from Covariances
- 6.3.2. Canonical Correlations
- 6.3.3. Simulated Example
- Chapter 7. Spectral Analysis
- 7.1. Periodic Data: Introduction
- 7.2. Example: Plant Enzyme Activity
- 7.3. PROC SPECTRA Introduced
- 7.4. Testing for White Noise
- 7.5. Harmonic Frequencies
- 7.6. Extremely Fast Fluctuations and Aliasing
- 7.7. The Spectral Density
- 7.8. Some Mathematical Detail (Optional Reading)
- 7.9. Estimating the Spectrum: The Smoothed Periodogram
- 7.10. Cross-Spectral Analysis
- 7.10.1. Interpreting Cross-Spectral Quantities
- 7.10.2. Interpreting Cross-Amplitude and Phase Spectra
- 7.10.3. PROC SPECTRA Statements
- 7.10.4. Cross-Spectral Analysis of the Neuse River Data
- 7.10.5. Details on Gain, Phase, and Pure Delay
- Chapter 8. Data Mining and Forecasting
- 8.1. Introduction
- 8.2. Forecasting Data Model
- 8.3. The Time Series Forecasting System
- 8.4. HPF Procedure
- 8.5. Scorecard Development
- 8.6. Business Goal Performance Metrics
- 8.7. Graphical Displays
- 8.8. Goal-Seeking Model Development
- 8.9. Summary
- References
- Index