Many-particle quantum dynamics in atomic and molecular fragmentation /
Saved in:
Imprint: | Berlin ; New York : Springer, c2003. |
---|---|
Description: | xxviii, 513 p. : ill. ; 24 cm. |
Language: | English |
Series: | Springer series on atomic, optical, and plasma physics, 1615-5653 ; 35 |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/4967189 |
Table of Contents:
- 1. Kinematics of Atomic and Molecular Fragmentation Reactions
- 1.1. General Considerations
- 1.1.1. Definitions and Parameters
- 1.1.2. Fragmentation Reactions for Atomic Targets
- 1.2. Particle Kinematics: Fragmentation of Atoms
- 1.2.1. Momentum and Energy Conservation Equations in the Nonrelativistic Case
- 1.2.2. Transverse-and Longitudinal-Momentum Balances
- 1.2.3. Fast Ion-Atom Collisions: Small Momentum, Energy, and Mass Transfers
- 1.2.4. Fast Ion-Atom Collisions: Recoil-Ion Momenta
- 1.2.5. Relativistic Case
- 1.3. Ion-Atom Collisions: Illustrative Examples
- 1.3.1. Single-Electron Capture
- 1.3.2. Target Ionization
- 1.4. Photon-Atom Collisions
- 1.4.1. Photoeffect
- 1.4.2. Compton Effect
- 1.5. Particle Kinematics: Fragmentation of Molecules
- 1.5.1. Many-Body Dissociation of Fast Molecular Beams
- 1.5.2. Longitudinal Fragment Velocity Components in the Approximation z 0 = 0
- 1.5.3. Transverse Fragment Velocity Components in the Approximation of Zero-Beam Extension
- 1.5.4. Transverse Fragment Velocity Components in the Approximation of Zero-Beam Divergence
- 1.5.5. Fragmentation into Two Particles with Equal Masses
- References
- 2. Recoil-Ion Momentum Spectroscopy and "Reaction Microscopes"
- 2.1. Introduction
- 2.2. Imaging Spectrometers for Ions
- 2.2.1. Time Focusing
- 2.2.2. Reconstruction of Momentum Components
- 2.2.3. Spectrometers with Position-Focusing
- 2.2.4. Electric-Field Distortions and Calibration
- 2.3. Target Preparation
- 2.3.1. Supersonic Jets
- 2.3.2. Atomic Traps (MOTRIMS)
- 2.4. Position-Sensitive Detectors
- 2.4.1. Wedge and Strip Anodes
- 2.4.2. Delay-Line Anodes
- 2.4.3. Multiple-Hit Detection
- 2.5. Imaging Spectrometers for Electrons
- 2.5.1. Direct Imaging of Electrons
- 2.5.2. Reaction Microscopes: Magnetic Guiding of Electrons
- 2.5.3. Reconstruction of Electron Momenta
- 2.6. New Developments
- References
- 3. Multiparticle Imaging of Fast Molecular Ion Beams
- 3.1. Introduction
- 3.2. Basic Concepts
- 3.2.1. Distances and Times: Order of Magnitude
- 3.2.2. Three-Dimensional vs. Two-Dimensional Imaging
- 3.3. Detector Concepts and Development
- 3.3.1. Optical Detection
- 3.3.2. Electrical Detection
- 3.4. Image Reconstruction
- 3.4.1. Two-Body Fragmentation
- 3.4.2. Three-Body Channel
- 3.5. Conclusion and Outlook
- References
- 4. Neutral-Atom Imaging Techniques
- 4.1. Introduction
- 4.2. Fast-Beam Apparatus
- 4.3. Detector Requirements and Specifications
- 4.4. Multihit Methods and Readout System
- 4.5. Data-Reduction Algorithms
- 4.5.1. Two-Body Decay
- 4.5.2. Many-Body Decay
- 4.6. Projection of the Multidimensional Cross Sections
- 4.6.1. Two-Body Decay
- 4.6.2. Three-Body Decay
- References
- 5. Collisional Breakup in Coulomb Systems
- 5.1. Introduction
- 5.2. Exterior Complex Scaling: Circumventing Asymptotic Boundary Conditions
- 5.3. Scattered-Wave Formalism: Options for Computing the Wave Function
- 5.3.1. Time-Independent Approach: Linear Equations
- 5.3.2. Time-Dependent Approach: Wavepacket Propagation
- 5.4. Extraction of Physical Cross Sections
- 5.4.1. Flux-Operator Approach
- 5.4.2. Formal Rearrangement Theory and Scattering Amplitudes for Three-Body Breakup
- 5.5. Multielectron Targets
- 5.5.1. Asymptotic Subtraction
- 5.6. Conclusion
- References
- 6. Hyperspherical {{\cal R}} -Matrix with Semiclassical Outgoing Waves
- 6.1. The Double-Electronic Continuum Problem
- 6.2. The '¿, 2e' Case: a Stationary Formulation
- 6.3. Outline of the Three-Step H {{\cal R}} M-SOW Resolution Scheme
- 6.4. First Step: Extraction of the Solution at R 0
- 6.4.1. {{\cal R}} -Matrix Relation
- 6.4.2. Local Properties of the Adiabatic Channels
- 6.4.3. Frame Transformation
- 6.4.4. Discussion
- 6.5. Second Step: Propagation of the Solution from R 0 to R max
- 6.5.1. Defining a Semiclassical Treatment of the R-motion
- 6.5.2. Solving the Resulting R-Propagation Equation
- 6.6. Third Step: Extraction of the DPI Cross Sections at R max
- 6.6.1. Definition of the DPI Cross Sections
- 6.6.2. The Flux-Based Extraction: A Specificity of H {{\cal R}} M-SOW
- 6.6.3. Structure of the Outgoing Flux at Intermediate Distances
- 6.7. Extracting the H {{\cal R}} M-SOW Single-Ionization Cross Sections
- 6.8. Comments on the Current State-of-the-Art in the Field
- References
- 7. Convergent Close-Coupling Approach to Electron-Atom Collisions
- 7.1. Introduction
- 7.2. Electron-Hydrogen Collisions
- 7.2.1. Structure
- 7.2.2. Scattering
- 7.2.3. S-Wave Model: Proof-of-Principle
- 7.2.4. Full Calculations
- 7.3. Conclusions and Future Directions
- References
- 8. Close-Coupling Approach to Multiple-Atomic Ionization
- 8.1. Introduction: Photoionization vs. Electron-Ion Scattering
- 8.2. Two-Electron Photoionization
- 8.2.1. Shake-Off and Two-Step Mechanisms
- 8.2.2. Ground-State Correlation and Gauge Invariance
- 8.2.3. Total Cross Sections for Ionization-Excitation and Double Photoionization of Helium Isoelectronic Sequence
- 8.2.4. Angular Correlation in Two-Electron Continuum: TDCS and Circular Dichroism
- 8.2.5. Symmetrized Amplitudes of Double Photoionization and "Practical Parametrization" of TDCS
- 8.2.6. Beyond Two-Electron Targets: Double Photoionization of Beryllium and Triple Photoionization of Lithium
- 8.3. Two-Electron Charged Particle Impact Ionization
- 8.3.1. (¿,2e) and (e,3e) Reactions on Helium
- 8.3.2. Second Born Corrections
- 8.4. Conclusion: Towards Larger Dynamical Freedom
- References
- 9. Numerical Grid Methods
- 9.1. Introduction
- 9.2. Solution of the Time-Dependent Schrodinger EquationUsing Numerical Spatial Grids and High-Order Time Propagation
- 9.2.1. Time Propagation using Taylor Series and Arnoldi Propagator Methods
- 9.2.2. Grid Methods: Finite-Difference and Discrete Variable Representation (DVR) Methods for Spatial Variables
- 9.3. Mixed Finite-Difference and Basis-Set Techniques for Spatial Variables in Spherical Geometry with Application to Laser-Driven Helium
- 9.4. Mixed Finite-Difference and DVR Techniquesfor Spatial Variables in Cylindrical Geometry with Application to Laser-driven H 2
- 9.5. Conclusions
- References
- 10. S-Matrix Approach to Intense-Field Processesin Many-Electron Systems
- 10.1. Introduction
- 10.2. The Rearranged Many-Body S-Matrix Theory
- 10.3. Applications to Intense-Field Ionization Dynamics
- 10.3.1. Intense-Field Ionization of Atoms
- 10.3.2. Recoil-Momentum Distributions for Nonsequential Double Ionization
- 10.3.3. Intense-Field Ionization of Molecules
- 10.4. Conclusion
- References
- 11. Quantum Orbits and Laser-Induced Nonsequential Double Ionization
- 11.1. Introduction
- 11.2. The S-Matrix Element
- 11.2.1. Volkov Wave Functions
- 11.2.2. The S Matrix in the Strong-Field Approximation
- 11.3. Quantum Orbits
- 11.3.1. The Saddle-Point Approximation
- 11.3.2. The Simple-Man Model
- 11.3.3. Classical Cutoffs
- 11.3.4. The Long and the Short Orbits
- 11.3.5. An Analytical Approximation to the Complex Quantum Orbits
- 11.4. Results
- 11.4.1. The Choice of the Electron-Electron Interaction Potential
- 11.4.2. The Case of the Contact Electron-Electron Interaction
- 11.4.3. Distribution of the Ion Momentum and the Electron Momenta
- 11.5. Resonances and the Effects of Orbits with Long Travel Time
- 11.5.1. Channel Closings
- 11.5.2. Relation to Formal Scattering Theory
- 11.6. Conclusions
- References
- 12. Time-Dependent Density Functional Theory in Atomic Collisions
- 12.1. Introduction
- 12.2. Basic Concepts of Time-Dependent Density-Functional Theory
- 12.3. Time-Dependent Kohn-Sham Equations
- 12.3.1. Kohn-Sham Potential
- 12.3.2. Numerical Solution of the Kohn-Sham Equations
- 12.4. Extraction of Observables
- 12.4.1. Exact Functionals
- 12.4.2. Approximate Functionals
- 12.5. Applications
- 12.5.1. Many-Electron Atoms in Strong Laser Fields
- 12.5.2. Ion-Atom Collisions Involving Many Active Electrons
- 12.5.3. Fragmentation of Atomic Clusters in Collisions with Ions
- 12.6. Conclusion
- References
- 13. Electronic Collisions in Correlated Systems: From the Atomic to the Thermodynamic Limit
- 13.1. Introduction
- 13.2. Two Charged-Particle Scattering
- 13.3. Three-Particle Coulomb Continuum States
- 13.3.1. Coulomb Three-Body Scattering in Parabolic Coordinates
- 13.3.2. Remarks on the Structure of the Three-Body Hamiltonian
- 13.3.3. Dynamical Screening
- 13.4. Theory of Excited N-Particle Finite Systems
- 13.5. Continuum States of N-Charged Particles
- 13.6. Green' Function Theory of Finite Correlated Systems
- 13.6.1. Application to Four-Body Systems
- 13.6.2. Thermodynamics and Phase Transitions in Finite Systems
- 13.7. Collective Response Versus Short-Range Dynamics
- 13.7.1. Manifestations of Collective Response in Finite Systems
- 13.8. The Quantum Field Approach: Basic Concepts
- 13.8.1. The Single-Particle Green's Function for Extended Systems
- 13.8.2. Particle-Particle and Hole-Hole Spectral Functions
- 13.8.3. The Two-Particle Photocurrent
- 13.9. Conclusion
- References
- 14. From Atoms to Molecules
- 14.1. Introduction
- 14.2. Double Ionization of Helium by Photoabsorption
- 14.2.1. Energy, Momentum, and Angular Momentum Considerations
- 14.2.2. Probability and Mechanisms of Double Ionization
- 14.2.3. Electron and Ion Momentum Distributions
- 14.2.4. Fully Differential Cross Sections
- 14.3. Double Ionization of Helium by Compton Scattering
- 14.4. Double Ionization of H 2
- 14.5. Conclusions and Open Questions
- References
- 15. Vector Correlations in Dissociative Photoionizationof Simple Molecules Induced by Polarized Light
- 15.1. Introduction
- 15.2. (V e , V A+ , ê) Photoelectron-Photoion Vector Correlations in Dissociative Photoionization of Small Molecules
- 15.2.1. Experimental Approaches
- 15.2.2. Electron-Ion Kinetic Energy Correlation
- 15.2.3. (V e , V A+ , ê) Angular Correlations
- 15.3. (V A+ , V B+ ,...ê) Vector Correlations in Multiple Ionization of Small Polyatomic Molecules
- 15.4. Conclusion and Perspectives
- References
- 16. Relaxation Dynamics of Core Excited Molecules Probed by Auger-Electron-Ion Coincidences
- 16.1. Introduction
- 16.2. Experimental Approaches
- 16.2.1. Description of the DTA (Double-Toroidal Analyzer)
- 16.2.2. Mass Spectrometer and Coincidence Regime
- 16.3. Nuclear Motion in Competition with Resonant Auger Relaxation
- 16.3.1. Mapping Potential Energy Surfaces by Core Electron Excitation: BF 3
- 16.3.2. Molecular Dissociation Mediated by Bending Motion in the Core-Excited CO 2
- 16.4. Selective Photofragmentation
- 16.5. Dynamical Angular Correlation of the Photoelectron and the Auger Electron
- 16.6. Conclusions and Perspectives
- References
- 17. Laser-Induced Fragmentation of Triatomic Hydrogen
- 17.1. Introduction
- 17.2. Signatures of Many-Body Interactions in Predissociation
- 17.2.1. Scalar Observables
- 17.2.2. Observation of Vector Correlations
- 17.3. Imaging Molecular Dynamics in Triatomics
- 17.3.1. Two-Body Decay
- 17.3.2. Three-Body Decay
- 17.3.3. Interpretation of Experimental Maps of Nonadiabatic Coupling
- 17.4. Outlook
- References
- 18. Nonsequential Multiple Ionization in Strong Laser Fields
- 18.1. Introduction
- 18.2. Strong-Field Single Ionization
- 18.3. Electron Rescattering on the Ion Core
- 18.4. Is Momentum Conserved in a Strong Laser Pulse?
- 18.5. An Experimental Setup
- 18.5.1. The Momentum Spectrometer
- 18.5.2. The Laser System
- 18.6. Neon Multiple Ionization
- 18.7. Argon Double Ionization: The Differences Compared to Neon
- 18.8. Conclusions and Perspectives
- References
- 19. Helium Double Ionization in Collisions with Electrons
- 19.1. Introduction
- 19.2. Experimental Setup
- 19.3. Low Momentum Transfer Collisions
- 19.4. Impulsive Collisions with Large Momentum Transfer
- 19.5. Conclusion and Outlook
- References
- 20. Fast p-He Transfer Ionization Processes: A Window to Reveal the Non-s 2 Contributions in the Momentum Wave Function of Ground-State He
- 20.1. Introduction
- 20.2. Experimental Technique
- 20.3. Experimental Results and Discussion of Observed Momentum Patterns
- 20.4. Shake-Off Process From Non-s 2 Contributions
- 20.5. Conclusions
- References
- 21. Single and Multiple Ionizationin Strong Ion-Induced Fields
- 21.1. Introduction
- 21.2. Interaction of Ion-Generated Strong Fields with Atoms and Single Ionization
- 21.2.1. Ion-Generated Fields
- 21.2.2. Single Ionization at Small Perturbations
- 21.2.3. Single Ionization for Strong Ion-Induced Fields at Large Perturbations
- 21.3. Double Ionization in Ion-Generated Strong Fields
- 21.3.1. Basic Mechanisms of Double Ionization
- 21.3.2. Double Ionization at Strong Perturbations
- 21.4. Multiple Ionization in Ion-Generated Strong Fields
- 21.5. A View Into the Future
- 21.5.1. Experiments in Storage Rings
- 21.5.2. Laser-Assisted Collisions
- References
- 22. Coulomb-Explosion Imaging Studies of Molecular Relaxation and Rearrangement
- 22.1. Foil-induced Coulomb-Explosion Imaging
- 22.2. Experimental Procedure
- 22.3. Selected Results
- 22.3.1. Radiative Vibrational Relaxation of HD +
- 22.3.2. The Quasilinear Molecule {{\rm CH}}_2^+
- 22.4. Outlook
- References
- 23. Charged-Particle-Induced Molecular Fragmentation at Large Velocities
- 23.1. Introduction
- 23.2. Molecular Fragmentation
- 23.2.1. Branching Ratios and Multielectron Removal Cross Sections
- 23.2.2. Orientation Effect
- 23.3. Fragmentation Dynamics
- 23.3.1. Non-Coulombic Fragmentation
- 23.3.2. Polyatomic Molecules
- 23.3.3. Projectile Momentum Transfer
- 23.4. Conclusion and Future Trends
- References
- 24. Electron-Interaction Effects in Ion-Induced Rearrangement and Ionization Dynamics: A Theoretical Perspective
- 24.1. Introduction
- 24.2. Classification of Electron-Interaction Effects: A Density Functional Approach
- 24.2.1. Effects Associated with the Kohn-Sham Potential
- 24.2.2. Effects Associated with the Density Dependence of Observables
- 24.3. Identification of Electron-Interaction Effects: Comparison with Experiment
- 24.3.1. Static Exchange Effects
- 24.3.2. Response Effects
- 24.3.3. Pauli Blocking
- 24.3.4. What Lies Beyond: Correlation Effects
- 24.4. Concluding Remarks
- References
- 25. Ionization Dynamics in Atomic Collisions
- 25.1. Introduction
- 25.2. Theory of Hidden Crossings
- 25.2.1. General Formalism
- 25.2.2. S-Ionization and Superpromotion
- 25.2.3. T-Ionization and Saddle-Point Electrons
- 25.2.4. D-Ionization and Radial Decoupling
- 25.3. Sturmian Theory
- 25.3.1. Scale Transformation of Solov'ev-Vinitsky
- 25.3.2. Sturmian Basis
- 25.3.3. Wave Functions and Transition Amplitudes in Fourier Space
- 25.4. Results of Calculations
- 25.4.1. Differential Cross Sections
- 25.4.2. Total Cross Sections
- 25.5. Conclusions
- References
- 26. Fragment-Imaging Studies of Dissociative Recombination
- 26.1. Dissociative Recombination
- 26.2. Experimental Method
- 26.3. Diatomic Molecules
- 26.3.1. Branching Ratios for the Hydrogen Molecular Ion
- 26.3.2. Noncrossing Mode Recombination (HeH + )
- 26.3.3. Metastable States in CH +
- 26.3.4. {{\rm O}}_2^+ and Similar, Atomspherically Relevant Species
- 26.4. Small Polyatomic Molecules
- 26.4.1. General Experimental Aspects
- 26.4.2. Triatomic Hydrogen ( {{\rm H}}_3^+ )
- 26.4.3. The Water Ion
- 26.5. Conclusions and Outlook
- References
- Index