Many-particle quantum dynamics in atomic and molecular fragmentation /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, c2003.
Description:xxviii, 513 p. : ill. ; 24 cm.
Language:English
Series:Springer series on atomic, optical, and plasma physics, 1615-5653 ; 35
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/4967189
Hidden Bibliographic Details
Other authors / contributors:Shevelʹko, V. P. (Vi͡acheslav Petrovich)
Ullrich, J. (Joachim)
ISBN:3540006672 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Kinematics of Atomic and Molecular Fragmentation Reactions
  • 1.1. General Considerations
  • 1.1.1. Definitions and Parameters
  • 1.1.2. Fragmentation Reactions for Atomic Targets
  • 1.2. Particle Kinematics: Fragmentation of Atoms
  • 1.2.1. Momentum and Energy Conservation Equations in the Nonrelativistic Case
  • 1.2.2. Transverse-and Longitudinal-Momentum Balances
  • 1.2.3. Fast Ion-Atom Collisions: Small Momentum, Energy, and Mass Transfers
  • 1.2.4. Fast Ion-Atom Collisions: Recoil-Ion Momenta
  • 1.2.5. Relativistic Case
  • 1.3. Ion-Atom Collisions: Illustrative Examples
  • 1.3.1. Single-Electron Capture
  • 1.3.2. Target Ionization
  • 1.4. Photon-Atom Collisions
  • 1.4.1. Photoeffect
  • 1.4.2. Compton Effect
  • 1.5. Particle Kinematics: Fragmentation of Molecules
  • 1.5.1. Many-Body Dissociation of Fast Molecular Beams
  • 1.5.2. Longitudinal Fragment Velocity Components in the Approximation z 0 = 0
  • 1.5.3. Transverse Fragment Velocity Components in the Approximation of Zero-Beam Extension
  • 1.5.4. Transverse Fragment Velocity Components in the Approximation of Zero-Beam Divergence
  • 1.5.5. Fragmentation into Two Particles with Equal Masses
  • References
  • 2. Recoil-Ion Momentum Spectroscopy and "Reaction Microscopes"
  • 2.1. Introduction
  • 2.2. Imaging Spectrometers for Ions
  • 2.2.1. Time Focusing
  • 2.2.2. Reconstruction of Momentum Components
  • 2.2.3. Spectrometers with Position-Focusing
  • 2.2.4. Electric-Field Distortions and Calibration
  • 2.3. Target Preparation
  • 2.3.1. Supersonic Jets
  • 2.3.2. Atomic Traps (MOTRIMS)
  • 2.4. Position-Sensitive Detectors
  • 2.4.1. Wedge and Strip Anodes
  • 2.4.2. Delay-Line Anodes
  • 2.4.3. Multiple-Hit Detection
  • 2.5. Imaging Spectrometers for Electrons
  • 2.5.1. Direct Imaging of Electrons
  • 2.5.2. Reaction Microscopes: Magnetic Guiding of Electrons
  • 2.5.3. Reconstruction of Electron Momenta
  • 2.6. New Developments
  • References
  • 3. Multiparticle Imaging of Fast Molecular Ion Beams
  • 3.1. Introduction
  • 3.2. Basic Concepts
  • 3.2.1. Distances and Times: Order of Magnitude
  • 3.2.2. Three-Dimensional vs. Two-Dimensional Imaging
  • 3.3. Detector Concepts and Development
  • 3.3.1. Optical Detection
  • 3.3.2. Electrical Detection
  • 3.4. Image Reconstruction
  • 3.4.1. Two-Body Fragmentation
  • 3.4.2. Three-Body Channel
  • 3.5. Conclusion and Outlook
  • References
  • 4. Neutral-Atom Imaging Techniques
  • 4.1. Introduction
  • 4.2. Fast-Beam Apparatus
  • 4.3. Detector Requirements and Specifications
  • 4.4. Multihit Methods and Readout System
  • 4.5. Data-Reduction Algorithms
  • 4.5.1. Two-Body Decay
  • 4.5.2. Many-Body Decay
  • 4.6. Projection of the Multidimensional Cross Sections
  • 4.6.1. Two-Body Decay
  • 4.6.2. Three-Body Decay
  • References
  • 5. Collisional Breakup in Coulomb Systems
  • 5.1. Introduction
  • 5.2. Exterior Complex Scaling: Circumventing Asymptotic Boundary Conditions
  • 5.3. Scattered-Wave Formalism: Options for Computing the Wave Function
  • 5.3.1. Time-Independent Approach: Linear Equations
  • 5.3.2. Time-Dependent Approach: Wavepacket Propagation
  • 5.4. Extraction of Physical Cross Sections
  • 5.4.1. Flux-Operator Approach
  • 5.4.2. Formal Rearrangement Theory and Scattering Amplitudes for Three-Body Breakup
  • 5.5. Multielectron Targets
  • 5.5.1. Asymptotic Subtraction
  • 5.6. Conclusion
  • References
  • 6. Hyperspherical {{\cal R}} -Matrix with Semiclassical Outgoing Waves
  • 6.1. The Double-Electronic Continuum Problem
  • 6.2. The '¿, 2e' Case: a Stationary Formulation
  • 6.3. Outline of the Three-Step H {{\cal R}} M-SOW Resolution Scheme
  • 6.4. First Step: Extraction of the Solution at R 0
  • 6.4.1. {{\cal R}} -Matrix Relation
  • 6.4.2. Local Properties of the Adiabatic Channels
  • 6.4.3. Frame Transformation
  • 6.4.4. Discussion
  • 6.5. Second Step: Propagation of the Solution from R 0 to R max
  • 6.5.1. Defining a Semiclassical Treatment of the R-motion
  • 6.5.2. Solving the Resulting R-Propagation Equation
  • 6.6. Third Step: Extraction of the DPI Cross Sections at R max
  • 6.6.1. Definition of the DPI Cross Sections
  • 6.6.2. The Flux-Based Extraction: A Specificity of H {{\cal R}} M-SOW
  • 6.6.3. Structure of the Outgoing Flux at Intermediate Distances
  • 6.7. Extracting the H {{\cal R}} M-SOW Single-Ionization Cross Sections
  • 6.8. Comments on the Current State-of-the-Art in the Field
  • References
  • 7. Convergent Close-Coupling Approach to Electron-Atom Collisions
  • 7.1. Introduction
  • 7.2. Electron-Hydrogen Collisions
  • 7.2.1. Structure
  • 7.2.2. Scattering
  • 7.2.3. S-Wave Model: Proof-of-Principle
  • 7.2.4. Full Calculations
  • 7.3. Conclusions and Future Directions
  • References
  • 8. Close-Coupling Approach to Multiple-Atomic Ionization
  • 8.1. Introduction: Photoionization vs. Electron-Ion Scattering
  • 8.2. Two-Electron Photoionization
  • 8.2.1. Shake-Off and Two-Step Mechanisms
  • 8.2.2. Ground-State Correlation and Gauge Invariance
  • 8.2.3. Total Cross Sections for Ionization-Excitation and Double Photoionization of Helium Isoelectronic Sequence
  • 8.2.4. Angular Correlation in Two-Electron Continuum: TDCS and Circular Dichroism
  • 8.2.5. Symmetrized Amplitudes of Double Photoionization and "Practical Parametrization" of TDCS
  • 8.2.6. Beyond Two-Electron Targets: Double Photoionization of Beryllium and Triple Photoionization of Lithium
  • 8.3. Two-Electron Charged Particle Impact Ionization
  • 8.3.1. (¿,2e) and (e,3e) Reactions on Helium
  • 8.3.2. Second Born Corrections
  • 8.4. Conclusion: Towards Larger Dynamical Freedom
  • References
  • 9. Numerical Grid Methods
  • 9.1. Introduction
  • 9.2. Solution of the Time-Dependent Schrodinger EquationUsing Numerical Spatial Grids and High-Order Time Propagation
  • 9.2.1. Time Propagation using Taylor Series and Arnoldi Propagator Methods
  • 9.2.2. Grid Methods: Finite-Difference and Discrete Variable Representation (DVR) Methods for Spatial Variables
  • 9.3. Mixed Finite-Difference and Basis-Set Techniques for Spatial Variables in Spherical Geometry with Application to Laser-Driven Helium
  • 9.4. Mixed Finite-Difference and DVR Techniquesfor Spatial Variables in Cylindrical Geometry with Application to Laser-driven H 2
  • 9.5. Conclusions
  • References
  • 10. S-Matrix Approach to Intense-Field Processesin Many-Electron Systems
  • 10.1. Introduction
  • 10.2. The Rearranged Many-Body S-Matrix Theory
  • 10.3. Applications to Intense-Field Ionization Dynamics
  • 10.3.1. Intense-Field Ionization of Atoms
  • 10.3.2. Recoil-Momentum Distributions for Nonsequential Double Ionization
  • 10.3.3. Intense-Field Ionization of Molecules
  • 10.4. Conclusion
  • References
  • 11. Quantum Orbits and Laser-Induced Nonsequential Double Ionization
  • 11.1. Introduction
  • 11.2. The S-Matrix Element
  • 11.2.1. Volkov Wave Functions
  • 11.2.2. The S Matrix in the Strong-Field Approximation
  • 11.3. Quantum Orbits
  • 11.3.1. The Saddle-Point Approximation
  • 11.3.2. The Simple-Man Model
  • 11.3.3. Classical Cutoffs
  • 11.3.4. The Long and the Short Orbits
  • 11.3.5. An Analytical Approximation to the Complex Quantum Orbits
  • 11.4. Results
  • 11.4.1. The Choice of the Electron-Electron Interaction Potential
  • 11.4.2. The Case of the Contact Electron-Electron Interaction
  • 11.4.3. Distribution of the Ion Momentum and the Electron Momenta
  • 11.5. Resonances and the Effects of Orbits with Long Travel Time
  • 11.5.1. Channel Closings
  • 11.5.2. Relation to Formal Scattering Theory
  • 11.6. Conclusions
  • References
  • 12. Time-Dependent Density Functional Theory in Atomic Collisions
  • 12.1. Introduction
  • 12.2. Basic Concepts of Time-Dependent Density-Functional Theory
  • 12.3. Time-Dependent Kohn-Sham Equations
  • 12.3.1. Kohn-Sham Potential
  • 12.3.2. Numerical Solution of the Kohn-Sham Equations
  • 12.4. Extraction of Observables
  • 12.4.1. Exact Functionals
  • 12.4.2. Approximate Functionals
  • 12.5. Applications
  • 12.5.1. Many-Electron Atoms in Strong Laser Fields
  • 12.5.2. Ion-Atom Collisions Involving Many Active Electrons
  • 12.5.3. Fragmentation of Atomic Clusters in Collisions with Ions
  • 12.6. Conclusion
  • References
  • 13. Electronic Collisions in Correlated Systems: From the Atomic to the Thermodynamic Limit
  • 13.1. Introduction
  • 13.2. Two Charged-Particle Scattering
  • 13.3. Three-Particle Coulomb Continuum States
  • 13.3.1. Coulomb Three-Body Scattering in Parabolic Coordinates
  • 13.3.2. Remarks on the Structure of the Three-Body Hamiltonian
  • 13.3.3. Dynamical Screening
  • 13.4. Theory of Excited N-Particle Finite Systems
  • 13.5. Continuum States of N-Charged Particles
  • 13.6. Green' Function Theory of Finite Correlated Systems
  • 13.6.1. Application to Four-Body Systems
  • 13.6.2. Thermodynamics and Phase Transitions in Finite Systems
  • 13.7. Collective Response Versus Short-Range Dynamics
  • 13.7.1. Manifestations of Collective Response in Finite Systems
  • 13.8. The Quantum Field Approach: Basic Concepts
  • 13.8.1. The Single-Particle Green's Function for Extended Systems
  • 13.8.2. Particle-Particle and Hole-Hole Spectral Functions
  • 13.8.3. The Two-Particle Photocurrent
  • 13.9. Conclusion
  • References
  • 14. From Atoms to Molecules
  • 14.1. Introduction
  • 14.2. Double Ionization of Helium by Photoabsorption
  • 14.2.1. Energy, Momentum, and Angular Momentum Considerations
  • 14.2.2. Probability and Mechanisms of Double Ionization
  • 14.2.3. Electron and Ion Momentum Distributions
  • 14.2.4. Fully Differential Cross Sections
  • 14.3. Double Ionization of Helium by Compton Scattering
  • 14.4. Double Ionization of H 2
  • 14.5. Conclusions and Open Questions
  • References
  • 15. Vector Correlations in Dissociative Photoionizationof Simple Molecules Induced by Polarized Light
  • 15.1. Introduction
  • 15.2. (V e , V A+ , ê) Photoelectron-Photoion Vector Correlations in Dissociative Photoionization of Small Molecules
  • 15.2.1. Experimental Approaches
  • 15.2.2. Electron-Ion Kinetic Energy Correlation
  • 15.2.3. (V e , V A+ , ê) Angular Correlations
  • 15.3. (V A+ , V B+ ,...ê) Vector Correlations in Multiple Ionization of Small Polyatomic Molecules
  • 15.4. Conclusion and Perspectives
  • References
  • 16. Relaxation Dynamics of Core Excited Molecules Probed by Auger-Electron-Ion Coincidences
  • 16.1. Introduction
  • 16.2. Experimental Approaches
  • 16.2.1. Description of the DTA (Double-Toroidal Analyzer)
  • 16.2.2. Mass Spectrometer and Coincidence Regime
  • 16.3. Nuclear Motion in Competition with Resonant Auger Relaxation
  • 16.3.1. Mapping Potential Energy Surfaces by Core Electron Excitation: BF 3
  • 16.3.2. Molecular Dissociation Mediated by Bending Motion in the Core-Excited CO 2
  • 16.4. Selective Photofragmentation
  • 16.5. Dynamical Angular Correlation of the Photoelectron and the Auger Electron
  • 16.6. Conclusions and Perspectives
  • References
  • 17. Laser-Induced Fragmentation of Triatomic Hydrogen
  • 17.1. Introduction
  • 17.2. Signatures of Many-Body Interactions in Predissociation
  • 17.2.1. Scalar Observables
  • 17.2.2. Observation of Vector Correlations
  • 17.3. Imaging Molecular Dynamics in Triatomics
  • 17.3.1. Two-Body Decay
  • 17.3.2. Three-Body Decay
  • 17.3.3. Interpretation of Experimental Maps of Nonadiabatic Coupling
  • 17.4. Outlook
  • References
  • 18. Nonsequential Multiple Ionization in Strong Laser Fields
  • 18.1. Introduction
  • 18.2. Strong-Field Single Ionization
  • 18.3. Electron Rescattering on the Ion Core
  • 18.4. Is Momentum Conserved in a Strong Laser Pulse?
  • 18.5. An Experimental Setup
  • 18.5.1. The Momentum Spectrometer
  • 18.5.2. The Laser System
  • 18.6. Neon Multiple Ionization
  • 18.7. Argon Double Ionization: The Differences Compared to Neon
  • 18.8. Conclusions and Perspectives
  • References
  • 19. Helium Double Ionization in Collisions with Electrons
  • 19.1. Introduction
  • 19.2. Experimental Setup
  • 19.3. Low Momentum Transfer Collisions
  • 19.4. Impulsive Collisions with Large Momentum Transfer
  • 19.5. Conclusion and Outlook
  • References
  • 20. Fast p-He Transfer Ionization Processes: A Window to Reveal the Non-s 2 Contributions in the Momentum Wave Function of Ground-State He
  • 20.1. Introduction
  • 20.2. Experimental Technique
  • 20.3. Experimental Results and Discussion of Observed Momentum Patterns
  • 20.4. Shake-Off Process From Non-s 2 Contributions
  • 20.5. Conclusions
  • References
  • 21. Single and Multiple Ionizationin Strong Ion-Induced Fields
  • 21.1. Introduction
  • 21.2. Interaction of Ion-Generated Strong Fields with Atoms and Single Ionization
  • 21.2.1. Ion-Generated Fields
  • 21.2.2. Single Ionization at Small Perturbations
  • 21.2.3. Single Ionization for Strong Ion-Induced Fields at Large Perturbations
  • 21.3. Double Ionization in Ion-Generated Strong Fields
  • 21.3.1. Basic Mechanisms of Double Ionization
  • 21.3.2. Double Ionization at Strong Perturbations
  • 21.4. Multiple Ionization in Ion-Generated Strong Fields
  • 21.5. A View Into the Future
  • 21.5.1. Experiments in Storage Rings
  • 21.5.2. Laser-Assisted Collisions
  • References
  • 22. Coulomb-Explosion Imaging Studies of Molecular Relaxation and Rearrangement
  • 22.1. Foil-induced Coulomb-Explosion Imaging
  • 22.2. Experimental Procedure
  • 22.3. Selected Results
  • 22.3.1. Radiative Vibrational Relaxation of HD +
  • 22.3.2. The Quasilinear Molecule {{\rm CH}}_2^+
  • 22.4. Outlook
  • References
  • 23. Charged-Particle-Induced Molecular Fragmentation at Large Velocities
  • 23.1. Introduction
  • 23.2. Molecular Fragmentation
  • 23.2.1. Branching Ratios and Multielectron Removal Cross Sections
  • 23.2.2. Orientation Effect
  • 23.3. Fragmentation Dynamics
  • 23.3.1. Non-Coulombic Fragmentation
  • 23.3.2. Polyatomic Molecules
  • 23.3.3. Projectile Momentum Transfer
  • 23.4. Conclusion and Future Trends
  • References
  • 24. Electron-Interaction Effects in Ion-Induced Rearrangement and Ionization Dynamics: A Theoretical Perspective
  • 24.1. Introduction
  • 24.2. Classification of Electron-Interaction Effects: A Density Functional Approach
  • 24.2.1. Effects Associated with the Kohn-Sham Potential
  • 24.2.2. Effects Associated with the Density Dependence of Observables
  • 24.3. Identification of Electron-Interaction Effects: Comparison with Experiment
  • 24.3.1. Static Exchange Effects
  • 24.3.2. Response Effects
  • 24.3.3. Pauli Blocking
  • 24.3.4. What Lies Beyond: Correlation Effects
  • 24.4. Concluding Remarks
  • References
  • 25. Ionization Dynamics in Atomic Collisions
  • 25.1. Introduction
  • 25.2. Theory of Hidden Crossings
  • 25.2.1. General Formalism
  • 25.2.2. S-Ionization and Superpromotion
  • 25.2.3. T-Ionization and Saddle-Point Electrons
  • 25.2.4. D-Ionization and Radial Decoupling
  • 25.3. Sturmian Theory
  • 25.3.1. Scale Transformation of Solov'ev-Vinitsky
  • 25.3.2. Sturmian Basis
  • 25.3.3. Wave Functions and Transition Amplitudes in Fourier Space
  • 25.4. Results of Calculations
  • 25.4.1. Differential Cross Sections
  • 25.4.2. Total Cross Sections
  • 25.5. Conclusions
  • References
  • 26. Fragment-Imaging Studies of Dissociative Recombination
  • 26.1. Dissociative Recombination
  • 26.2. Experimental Method
  • 26.3. Diatomic Molecules
  • 26.3.1. Branching Ratios for the Hydrogen Molecular Ion
  • 26.3.2. Noncrossing Mode Recombination (HeH + )
  • 26.3.3. Metastable States in CH +
  • 26.3.4. {{\rm O}}_2^+ and Similar, Atomspherically Relevant Species
  • 26.4. Small Polyatomic Molecules
  • 26.4.1. General Experimental Aspects
  • 26.4.2. Triatomic Hydrogen ( {{\rm H}}_3^+ )
  • 26.4.3. The Water Ion
  • 26.5. Conclusions and Outlook
  • References
  • Index