Exploration and analysis of DNA microarray and protein array data /

Saved in:
Bibliographic Details
Author / Creator:Amaratunga, Dhammika, 1956-
Imprint:Hoboken, N.J. : Wiley-Interscience, c2004.
Description:xiv, 246 p. : ill. ; 25 cm.
Language:English
Series:Wiley series in probability and statistics
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5002827
Hidden Bibliographic Details
Other authors / contributors:Cabrera, Javier.
ISBN:0471273988 (cloth)
Notes:Includes bibliographical references (p. 222-236) and indexes.
Table of Contents:
  • Preface
  • 1. A Brief Introduction
  • 1.1. A Note on Exploratory Data Analysis
  • 1.2. Computing Considerations and Software
  • 1.3. A Brief Outline of the Book
  • 2. Genomics Basics
  • 2.1. Genes
  • 2.2. DNA
  • 2.3. Gene Expression
  • 2.4. Hybridization Assays and Other Laboratory Techniques
  • 2.5. The Human Genome
  • 2.6. Genome Variations and Their Consequences
  • 2.7. Genomics
  • 2.8. The Role of Genomics in Pharmaceutical Research
  • 2.9. Proteins
  • 2.10. Bioinformatics
  • Supplementary Reading
  • Exercises
  • 3. Microarrays
  • 3.1. Types of Microarray Experiments
  • 3.1.1. Experiment Type 1: Tissue-Specific Gene Expression
  • 3.1.2. Experiment Type 2: Development Genetics
  • 3.1.3. Experiment Type 3: Genetic Diseases
  • 3.1.4. Experiment Type 4: Complex Diseases
  • 3.1.5. Experiment Type 5: Pharmacological Agents
  • 3.1.6. Experiment Type 6: Plant Breeding
  • 3.1.7. Experiment Type 7: Environmental Monitoring
  • 3.2. A Very Simple Hypothetical Microarray Experiment
  • 3.3. A Typical Microarray Experiment
  • 3.3.1. Microarray Preparation
  • 3.3.2. Sample Preparation
  • 3.3.3. The Hybridization Step
  • 3.3.4. Scanning the Microarray
  • 3.3.5. Interpreting the Scanned Image
  • 3.4. Multichannel cDNA Microarrays
  • 3.5. Oligonucleotide Arrays
  • 3.6. Bead-Based Arrays
  • 3.7. Confirmation of Microarray Results
  • Supplementary Reading and Electronic References
  • Exercises
  • 4. Processing the Scanned Image
  • 4.1. Converting the Scanned Image to the Spotted Image
  • 4.1.1. Gridding
  • 4.1.2. Segmentation
  • 4.1.3. Quantification
  • 4.2. Quality Assessment
  • 4.2.1. Visualizing the Spotted Image
  • 4.2.2. Numerical Evaluation of Array Quality
  • 4.2.3. Spatial Problems
  • 4.2.4. Spatial Randomness
  • 4.2.5. Quality Control of Arrays
  • 4.2.6. Assessment of Spot Quality
  • 4.3. Adjusting for Background
  • 4.3.1. Estimating the Background
  • 4.3.2. Adjusting for the Estimated Background
  • 4.4. Expression Level Calculation for Two-Channel cDNA Microarrays
  • 4.5. Expression Level Calculation for Oligonucleotide Arrays
  • 4.5.1. The Average Difference
  • 4.5.2. A Weighted Average Difference
  • 4.5.3. Perfect Matches Only
  • 4.5.4. Background Adjustment Approach
  • 4.5.5. Model-Based Approach
  • 4.5.6. Absent-Present Calls
  • Supplementary Reading
  • Exercises
  • 5. Preprocessing Microarray Data
  • 5.1. Logarithmic Transformation
  • 5.2. Variance Stabilizing Transformations
  • 5.3. Sources of Bias
  • 5.4. Normalization
  • 5.5. Intensity-Dependent Normalization
  • 5.5.1. Smooth Function Normalization
  • 5.5.2. Quantile Normalization
  • 5.5.3. Normalization of Oligonucleotide Arrays
  • 5.5.4. Normalization of Two-Channel Arrays
  • 5.5.5. Spatial Normalization
  • 5.5.6. Stagewise Normalization
  • 5.6. Judging the Success of a Normalization
  • 5.7. Outlier Identification
  • 5.7.1. Nonresistant Rules for Outlier Identification
  • 5.7.2. Resistant Rules for Outlier Identification
  • 5.8. Assessing Replicate Array Quality
  • Exercises
  • 6. Summarization
  • 6.1. Replication
  • 6.2. Technical Replicates
  • 6.3. Biological Replicates
  • 6.4. Experiments with Both Technical and Biological Replicates
  • 6.5. Multiple Oligonucleotide Arrays
  • 6.6. Estimating Fold Change in Two-Channel Experiments
  • 6.7. Bayes Estimation of Fold Change
  • Exercises
  • 7. Two-Group Comparative Experiments
  • 7.1. Basics of Statistical Hypothesis Testing
  • 7.2. Fold Changes
  • 7.3. The Two-Sample t Test
  • 7.4. Diagnostic Checks
  • 7.5. Robust t Tests
  • 7.6. Randomization Tests
  • 7.7. The Mann-Whitney-Wilcoxon Rank Sum Test
  • 7.8. Multiplicity
  • 7.8.1. A Pragmatic Approach to the Issue of Multiplicity
  • 7.8.2. Simple Multiplicity Adjustments
  • 7.8.3. Sequential Multiplicity Adjustments
  • 7.9. The False Discovery Rate
  • 7.9.1. The Positive False Discovery Rate
  • 7.10. Small Variance-Adjusted t Tests and SAM
  • 7.10.1. Modifying the t Statistic
  • 7.10.2. Assesing Significance with the SAM t Statistic
  • 7.10.3. Strategies for Using SAM
  • 7.10.4. An Empirical Bayes Framework
  • 7.10.5. Understanding the SAM Adjustment
  • 7.11. Conditional t
  • 7.12. Borrowing Strength across Genes
  • 7.12.1. Simple Methods
  • 7.12.2. A Bayesian Model
  • 7.13. Two-Channel Experiments
  • 7.13.1. The Paired Sample t Test and SAM
  • 7.13.2. Borrowing Strength via Hierarchical Modeling
  • Supplementary Reading
  • Exercises
  • 8. Model-Based Inference and Experimental Design Considerations
  • 8.1. The F Test
  • 8.2. The Basic Linear Model
  • 8.3. Fitting the Model in Two Stages
  • 8.4. Multichannel Experiments
  • 8.5. Experimental Design Considerations
  • 8.5.1. Comparing Two Varieties with Two-Channel Microarrays
  • 8.5.2. Comparing Multiple Varieties with Two-Channel Microarrays
  • 8.5.3. Single-Channel Microarray Experiments
  • 8.6. Miscellaneous Issues
  • Supplementary Reading
  • Exercises
  • 9. Pattern Discovery
  • 9.1. Initial Considerations
  • 9.2. Cluster Analysis
  • 9.2.1. Dissimilarity Measures and Similarity Measures
  • 9.2.2. Guilt by Association
  • 9.2.3. Hierarchical Clustering
  • 9.2.4. Partitioning Methods
  • 9.2.5. Model-Based Clustering
  • 9.2.6. Chinese Restaurant Clustering
  • 9.2.7. Discussion
  • 9.3. Seeking Patterns Visually
  • 9.3.1. Principal Components Analysis
  • 9.3.2. Factor Analysis
  • 9.3.3. Biplots
  • 9.3.4. Spectral Map Analysis
  • 9.3.5. Multidimensional Scaling
  • 9.3.6. Projection Pursuit
  • 9.3.7. Data Visualization with the Grand Tour and Projection Pursuit
  • 9.4. Two-Way Clustering
  • 9.4.1. Block Clustering
  • 9.4.2. Gene Shaving
  • 9.4.3. The Plaid Model
  • Software Notes
  • Supplementary Reading
  • Exercises
  • 10. Class Prediction
  • 10.1. Initial Considerations
  • 10.1.1. Misclassification Rates
  • 10.1.2. Reducing the Number of Classifiers
  • 10.2. Linear Discriminant Analysis
  • 10.3. Extensions of Fisher's LDA
  • 10.4. Nearest Neighbors
  • 10.5. Recursive Partitioning
  • 10.5.1. Classification Trees
  • 10.5.2. Activity Region Finding
  • 10.6. Neural Networks
  • 10.7. Support Vector Machines
  • 10.8. Integration of Genomic Information
  • 10.8.1. Integration of Gene Expression Data and Molecular Structure Data
  • 10.8.2. Pathway Inference
  • Software Notes
  • Supplementary Reading
  • Exercises
  • 11. Protein Arrays
  • 11.1. Introduction
  • 11.2. Protein Array Experiments
  • 11.3. Special Issues with Protein Arrays
  • 11.4. Analysis
  • 11.5. Using Antibody Antigen Arrays to Measure Protein Concentrations
  • Exercises
  • References
  • Author Index
  • Subject Index