The microtremor survey method /

Saved in:
Bibliographic Details
Author / Creator:Okada, Hiroshi, 1934-
Imprint:Tulsa, OK : Society of Exploration Geophysicists with the cooperation of Society of Exploration Geophysicists of Japan [and] Australian Society of Exploration Geophysicists, 2003.
Description:xiv, 135 p. : ill. (some col.) ; 23 cm.
Language:English
Series:Geophysical monograph series ; no. 12
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5127352
Hidden Bibliographic Details
ISBN:1560801204
Notes:Includes bibliographical references (p. 121-127) and index.
Table of Contents:
  • Historical note and foreword to the SEG translation
  • Translator's foreword
  • Preface
  • Acknowledgments
  • 1. Introduction
  • 2. Fundamental properties of microtremors
  • 2.1. What are microtremors?
  • 2.2. Power spectra of microtremors
  • 2.3. Temporal and spatial variation of microtremors
  • 2.3.1. Temporal variation of microtremors
  • 2.3.2. Spatial variation of microtremors
  • 3. Principle of the microtremor survey method
  • 3.1. The microtremor survey method (MSM)
  • 3.1.1. Wave type used in microtremor surveys
  • 3.1.2. From dispersion of surface waves to subsurface structure
  • 3.2. Spectral representation of microtremors
  • 3.2.1. Spectral representation of a stochastic process
  • 3.2.2. Spectral representation of microtremors
  • 3.3. Detection of surface waves
  • 3.4. Detection of Rayleigh waves from the vertical component of microtremors (frequency-wavenumber method)
  • 3.4.1. Frequency-wavenumber power spectral density function
  • 3.4.2. Beam-forming method
  • 3.4.3. Maximum likelihood method or high-resolution method
  • 3.4.4. Phase velocity and direction of wave propagation
  • 3.4.5. Calculation of cross-spectra by block averaging
  • 3.5. Detection of Rayleigh waves from the vertical component of microtremors (spatial autocorrelation method)
  • 3.5.1. Spectral representation of microtremors in a polar coordinate system
  • 3.5.2. The spatial autocorrelation function and the spatial covariance function
  • 3.5.3. The spatial autocorrelation coefficient of a circular array and its relation to phase velocity
  • 3.6. Detection of Love waves from microtremors (spatial autocorrelation method)
  • 3.6.1. The spectral representation of horizontally polarized waves in microtremors
  • 3.6.2. The spatial autocorrelation function for horizontally polarized waves
  • 3.6.3. The spatial autocorrelation coefficient for horizontally polarized waves and wavenumber equation of Love waves
  • 4. Estimating phase velocity and subsurface structure
  • 4.1. Estimating phase velocity
  • 4.1.1. Spatial autocorrelation (SPAC) method
  • 4.1.2. Extended spatial autocorrelation (ESPAC) method
  • 4.2. Estimating subsurface structure from phase velocity
  • 4.2.1. Procedure for estimating subsurface structure
  • 4.2.2. Inversion
  • 4.2.3. Estimating adjustment parameters
  • 4.2.4. Calculation procedure
  • 4.2.5. Effective variables for refining a model
  • 5. Data acquisition and analysis methods
  • 5.1. Observing microtremors
  • 5.1.1. Observation array
  • 5.1.2. Data acquisition system
  • 5.1.3. Time for data collection
  • 5.2. Data analysis
  • 5.2.1. Data analysis by frequency-wavenumber method
  • 5.2.2. Data analysis by spatial autocorrelation method
  • 5.2.3. Case history of estimating phase velocity
  • 6. Case histories
  • 6.1. Application of the frequency-wavenumber (f-k) method
  • 6.1.1. Regional structural survey by long-period microtremors
  • 6.1.2. Comparison of the result with a reflection seismic survey
  • 6.2. Application of the spatial autocorrelation method
  • 6.2.1. Evaluating the reliability of the spatial autocorrelation method by comparison with wireline log data
  • 6.2.2. Estimating shallow and deep subsurface structures in earthquake damaged areas
  • 7. Closing remarks
  • References
  • References for general reading
  • Index