Long-wavelength infrared semiconductor lasers /

Saved in:
Bibliographic Details
Imprint:Hoboken, N.J. : Wiley, c2004.
Description:xv, 395 p. : ill. ; 25 cm.
Language:English
Series:Wiley series in lasers and applications
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5161652
Hidden Bibliographic Details
Other authors / contributors:Choi, Hong Kyun.
ISBN:0471392006 (cloth)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • Acknowledgments
  • Contributors
  • 1.. Coherent Semiconductor Sources in the Long-Wavelength Infrared Spectrum
  • 1.1. Introduction
  • 1.2. Synopsis of Long-Wavelength Coherent Semiconductor Sources
  • 1.2.1. Interband Lasers
  • 1.2.2. Intersubband Quantum Cascade Lasers
  • 1.2.3. Hot-Hole Lasers
  • 1.2.4. Photomixers
  • 1.2.5. Plasmon Emitters
  • 1.3. Scope of Book
  • References
  • 2.. 2-[mu]m Wavelength Lasers Employing InP-based Strained-Layer Quantum Wells
  • 2.1. Introduction
  • 2.2. Material Properties of InGaAsP
  • 2.2.1. Composition Dependence of Band-Gap Energy and Lattice Constant
  • 2.2.2. Miscibility Gap
  • 2.3. Design Consideration of MQW Active Region
  • 2.3.1. Strain and Quantum Size Effects
  • 2.3.2. Critical Layer Thickness for Strained-Layer Heterostructures
  • 2.3.3. Effects of Well Strain and Barrier Height on Lasing Characteristics
  • 2.4. Growth and Characterization of Strained-InGaAs Quantum Wells
  • 2.4.1. InGaAs/InGaAs Multiple Quantum Wells
  • 2.4.2. InGaAs/InGaAsP Multiple Quantum Wells
  • 2.5. Lasing Characteristics of 2-[mu]m Wavelength InGaAs-MQW Lasers
  • 2.5.1. Fabry-Perot Lasers
  • 2.5.2. Distributed-Feedback Lasers
  • 2.6. Conclusions and Future Prospects
  • Acknowledgments
  • References
  • 3.. Antimonide Mid-IR Lasers
  • 3.1. Introduction
  • 3.2. Antimonide III-V Material System
  • 3.3. Antimonide Lasers Emitting in the 2[mu]m [less than sign lambda less than sign] 3 [mu]m Rang
  • 3.3.1. Historical Development
  • 3.3.2. State of the Art
  • 3.4. Antimonide Lasers Emitting in the [lambda greater than or equal] 3 [mu]m Range
  • 3.4.1. Historical Development
  • 3.4.2. Double-Heterostructure Lasers
  • 3.4.3. Type-I Quantum-Well Lasers
  • 3.4.4. Type-II Quantum-Well Lasers
  • 3.4.5. Interband Cascade Lasers
  • 3.5. Challenges and Issues
  • 3.5.1. Antimonide Growth Immaturity
  • 3.5.2. Nonradiative Recombination and Threshold
  • 3.5.3. Linewidth Enhancement Factor (LEF)
  • 3.5.4. Single-Mode Operation and Wavelength Tuning
  • 3.5.5. Beam Quality
  • 3.5.6. Thermal Management and Thermal Conductivity
  • 3.6. Conclusions
  • References
  • 4.. Lead-Chalcogenide-based Mid-Infrared Diode Lasers
  • 4.1. Introduction
  • 4.2. Homostructure Lasers
  • 4.2.1. Material Properties
  • 4.2.2. Device Fabrication
  • 4.2.3. Device Characterization
  • 4.3. Double-Heterostructure Lasers
  • 4.3.1. Pb[subscript 1-x]Eu[subscript x]Se[subscript y]Te[subscript 1-y] Lasers
  • 4.3.2. Pb[subscript 1-x]Eu[subscript x]Se and Pb[subscript 1-x]Sr[subscript x]Se Lasers
  • 4.3.3. Pb[subscript 1-x]Sn[subscript x]Te and PbSnSeTe/PbSe Lasers
  • 4.3.4. Alternative Cladding Layer Materials
  • 4.3.5. Quality Control Programs at Laser Components
  • 4.3.6. High-Temperature Operation of Double-Heterostructure Lasers
  • 4.3.7. Index-Guided Double-Heterostructure Lasers
  • 4.4. Quantum-Well Lasers
  • 4.5. DFB and DBR Lasers
  • 4.5.1. Introduction
  • 4.5.2. Experimental Work
  • 4.6. IV-VI Epitaxy on BaF[subscript 2] and Silicon
  • 4.6.1. Introduction
  • 4.6.2. Growth and Characterization of IV-VI Layers on BaF[subscript 2]
  • 4.6.3. Growth and Characterization of IV-VI Layers on Silicon
  • 4.7. Conclusion
  • Acknowledgments
  • References
  • 5.. InP and GaAs-based Quantum Cascade Lasers
  • 5.1. Introduction
  • 5.1.1. Quantum Engineering
  • 5.1.2. Organization of the Chapter
  • 5.2. Quantum Cascade Laser Fundamentals
  • 5.2.1. History
  • 5.2.2. Unipolarity and Cascading
  • 5.2.3. Intersubband Transitions
  • 5.3. Fundamentals of the Three-Quantum-Well Active-Region Device
  • 5.3.1. Active Region
  • 5.3.2. Doping and Injection/Relaxation Region
  • 5.3.3. Threshold Current Density
  • 5.3.4. Effect of Cascading on the Performances of QC Lasers
  • 5.4. Waveguide and Technology
  • 5.4.1. Waveguide
  • 5.4.2. Processing
  • 7.4. Antenna Design
  • 7.4.1. Resonant Designs
  • 7.4.2. Broadband Distributed Designs
  • 7.5. Applications
  • 7.5.1. Local Oscillators
  • 7.5.2. Transceiver for Spectroscopy
  • 7.6. Summary
  • Acknowledgments
  • References
  • Index