Generalized latent variable modeling : multilevel, longitudinal, and structural equation models /

Saved in:
Bibliographic Details
Author / Creator:Skrondal, Anders.
Imprint:Boca Raton : Chapman & Hall/CRC, c2004.
Description:xi, 508 p. : ill. ; 25 cm.
Language:English
Series:Chapman & Hall/CRC interdisciplinary statistics series
Interdisciplinary statistics.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5171970
Hidden Bibliographic Details
Other authors / contributors:Rabe-Hesketh, S.
ISBN:1584880007 (alk. paper)
Notes:Includes bibliographical references (p. 445-486) and indexes.
Table of Contents:
  • Preface
  • Dedication
  • I. Methodology
  • 1. The omni-presence of latent variables
  • 1.1. Introduction
  • 1.2. 'True' variable measured with error
  • 1.3. Hypothetical constructs
  • 1.4. Unobserved heterogeneity
  • 1.5. Missing values and counterfactuals
  • 1.6. Latent responses
  • 1.7. Generating flexible distributions
  • 1.8. Combining information
  • 1.9. Summary
  • 2. Modeling different response processes
  • 2.1. Introduction
  • 2.2. Generalized linear models
  • 2.3. Extensions of generalized linear models
  • 2.4. Latent response formulation
  • 2.5. Modeling durations or survival
  • 2.6. Summary and further reading
  • 3. Classical latent variable models
  • 3.1. Introduction
  • 3.2. Multilevel regression models
  • 3.3. Factor models and item response models
  • 3.4. Latent class models
  • 3.5. Structural equation models with latent variables
  • 3.6. Longitudinal models
  • 3.7. Summary and further reading
  • 4. General model framework
  • 4.1. Introduction
  • 4.2. Response model
  • 4.3. Structural model for the latent variables
  • 4.4. Distribution of the disturbances
  • 4.5. Parameter restrictions and fundamental parameters
  • 4.6. Reduced form of the latent variables and linear predictor
  • 4.7. Moment structure of the latent variables
  • 4.8. Marginal moment structure of observed and latent responses
  • 4.9. Reduced form distribution and likelihood
  • 4.10. Reduced form parameters
  • 4.11. Summary and further reading
  • 5. Identification and equivalence
  • 5.1. Introduction
  • 5.2. Identification
  • 5.3. Equivalence
  • 5.4. Summary and further reading
  • 6. Estimation
  • 6.1. Introduction
  • 6.2. Maximum likelihood: Closed form marginal likelihood
  • 6.3. Maximum likelihood: Approximate marginal likelihood
  • 6.4. Maximizing the likelihood
  • 6.5. Nonparametric maximum likelihood estimation
  • 6.6. Restricted/Residual maximum likelihood (REML)
  • 6.7. Limited information methods
  • 6.8. Maximum quasi-likelihood
  • 6.9. Generalized Estimating Equations (GEE)
  • 6.10. Fixed effects methods
  • 6.11. Bayesian methods
  • 6.12. Summary
  • Appendix. Some software and references
  • 7. Assigning values to latent variables
  • 7.1. Introduction
  • 7.2. Posterior distributions
  • 7.3. Empirical Bayes (EB)
  • 7.4. Empirical Bayes modal (EBM)
  • 7.5. Maximum likelihood
  • 7.6. Relating the scoring methods in the 'linear case'
  • 7.7. Ad hoc scoring methods
  • 7.8. Some uses of latent scoring and classification
  • 7.9. Summary and further reading
  • Appendix. Some software
  • 8. Model specification and inference
  • 8.1. Introduction
  • 8.2. Statistical modeling
  • 8.3. Inference (likelihood based)
  • 8.4. Model selection: Relative fit criteria
  • 8.5. Model adequacy: Global absolute fit criteria
  • 8.6. Model diagnostics: Local absolute fit criteria
  • 8.7. Summary and further reading
  • II. Applications
  • 9. Dichotomous responses
  • 9.1. Introduction
  • 9.2. Respiratory infection in children: A random intercept model
  • 9.3. Diagnosis of myocardial infarction: A latent class model
  • 9.4. Arithmetic reasoning: Item response models
  • 9.5. Nicotine gum and smoking cessation: A meta-analysis
  • 9.6. Wives' employment transitions: Markov models with unobserved heterogeneity
  • 9.7. Counting snowshoe hares: Capture-recapture models with heterogeneity
  • 9.8. Attitudes to abortion: A multilevel item response model
  • 9.9. Summary and further reading
  • 10. Ordinal responses
  • 10.1. Introduction
  • 10.2. Cluster randomized trial of sex education: Latent growth curve model
  • 10.3. Political efficacy: Factor dimensionality and item-bias
  • 10.4. Life satisfaction: Ordinal scaled probit factor models
  • 10.5. Summary and further reading
  • 11. Counts
  • 11.1. Introduction
  • 11.2. Prevention of faulty teeth in children: Modeling overdispersion
  • 11.3. Treatment of epilepsy: A random coefficient model
  • 11.4. Lip cancer in Scotland: Disease mapping
  • 11.5. Summary and further reading
  • 12. Durations and survival
  • 12.1. Introduction
  • 12.2. Modeling multiple events clustered duration data
  • 12.3. Onset of smoking: Discrete time frailty models
  • 12.4. Exercise and angina: Proportional hazards random effects and factor models
  • 12.5. Summary and further reading
  • 13. Comparative responses
  • 13.1. Introduction
  • 13.2. Heterogeneity and 'Independence from Irrelevant Alternatives'
  • 13.3. Model structure
  • 13.4. British general elections: Multilevel models for discrete choice and rankings
  • 13.5. Post-materialism: A latent class model for rankings
  • 13.6. Consumer preferences for coffee makers: A conjoint choice model
  • 13.7. Summary and further reading
  • 14. Multiple processes and mixed responses
  • 14.1. Introduction
  • 14.2. Diet and heart disease: A covariate measurement error model
  • 14.3. Herpes and cervical cancer: A latent class covariate measurement error model for a case-control study
  • 14.4. Job training and depression: A complier average causal effect model
  • 14.5. Physician advice and drinking: An endogenous treatment model
  • 14.6. Treatment of liver cirrhosis: A joint survival and marker model
  • 14.7. Summary and further reading
  • References
  • Index
  • Author index