Chemical kinetics and inorganic reaction mechanisms /

Saved in:
Bibliographic Details
Author / Creator:Ašperger, Smiljko.
Uniform title:Kemijska kinetika i anorganski reakcijski mehanzmi. English
Edition:2nd ed.
Imprint:New York : Kluwer Academic/Plenum Publishers, c2003.
Description:xvii, 361 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5171990
Hidden Bibliographic Details
ISBN:0306477475
Notes:"This book is the thoroughly revised English version of the first Croatian edition published in 1999"-Pref.
Includes bibliographical references and index.
Table of Contents:
  • Introduction
  • 1.. Chemical kinetics and reaction mechanisms
  • 1.1.. Introduction
  • 1.2.. Chemical reactions and energy changes
  • 1.3.. Collision theory
  • 1.3.1.. Calculation of rate constants
  • 1.3.2.. Arrhenius equation
  • 1.4.. Transition state theory
  • 1.5.. Steric effects and reactivity of strictly oriented molecules
  • 1.5.1.. Molecular beams studies
  • 1.5.2.. Symmetric top molecules
  • 1.6.. Reaction energy profiles and the reaction coordinate
  • 1.7.. Bimolecular and unimolecular nucleophilic substitutions (S[subscript N]2 and S[subscript N]1 substitutions)
  • 1.8.. Novel views on the mechanism of bimolecular substitutions in the gas phase
  • 1.9.. Classification of reaction mechanisms in inorganic chemistry involving metal complexes (D, A, I[subscript d] and I[subscript a] mechanisms)
  • 1.9.1.. The collision theory in solutions
  • 1.9.2.. Primary kinetic salt effect
  • 1.9.3.. IUPAC recommendations for the representation of reaction mechanisms
  • 1.9.4.. Nomenclature of coordination compounds
  • 1.10.. Direct observation of the activated complex
  • 1.10.1. Spectroscopy in the transition state region
  • 1.11.. The influence of the solvent on the reaction rates and mechanisms
  • 1.11.1.. Influence of solvent polarity on the rates of chemical reactions
  • 1.12.. Steady-state approximation and its application to replacement reactions
  • 1.13.. Reactions of ion pairs
  • 1.14.. Primary and secondary kinetic isotope effects
  • 1.14.1.. Primary kinetic isotope effects
  • 1.14.2.. Secondary kinetic isotope effects
  • 1.15.. Influence of tunneling on the primary and secondary kinetic isotope effects
  • 1.15.1.. Extremely high kinetic isotope effects and tunneling
  • 1.15.2.. Secondary [alpha]-deuterium kinetic isotope effect and tunneling
  • References
  • Bibliography
  • 2.. Substitution reactions on metal complexes
  • 2.1.. Introduction
  • 2.2.. Reactions of organometallic complexes with halogenes (S[subscript E]2 mechanism)
  • 2.3.. Labile and inert complexes
  • 2.4.. Crystal-field theory
  • 2.4.1.. Splitting of d orbitals in the octahedral crystal field
  • 2.4.2.. Crystal-field stabilization energies of d orbitals for various geometric configurations, and substitution rates
  • 2.4.3.. Influence of crystal field stabilization energies on the rates and mechanism of octahedral substitutions
  • 2.5.. Ligand field and electron transitions
  • 2.6.. Substitution reactions on octahedral complexes
  • 2.6.1.. Rates of water exchange in octahedral aqua complexes
  • 2.6.2.. Pressure dependence of the reaction rate constant; volume of activation
  • 2.6.3.. Substitution of coordinated water of octahedral complexes with anions ("anations")
  • 2.6.4.. Aquation and acid catalysis
  • 2.6.5.. Base catalysis
  • 2.6.6.. Stereochemistry of octahedral substitutions
  • 2.6.7.. Attacks of reactants on ligands (not on metal)
  • 2.6.8.. Linkage isomerism
  • 2.7.. Nucleophilicity in inorganic chemistry
  • 2.7.1.. n[subscript Pt] Scale
  • 2.7.2.. The scale of Swain and Scott
  • 2.7.3.. Edwards' scale
  • 2.7.4.. The theory of "hard" and "soft" acids and bases
  • 2.8.. Substitutions on square-planar complexes
  • 2.8.1.. The mechanism of ligand replacements
  • 2.8.2.. Trans effect
  • 2.8.3.. Cis effect
  • 2.8.4.. Leaving group effects
  • 2.8.5.. Effect of the central metal ion
  • 2.9.. Substitution reactions of tetrahedral complexes
  • 2.10.. Substitutions of carbonyls
  • 2.10.1.. Substitutions of the carbonyls of complexes with a metal-metal bond
  • References
  • Bibliography
  • 3.. Oxidative additions and reductive eliminations
  • 3.1.. Oxidative additions
  • 3.1.1.. Two-electron oxidative additions
  • 3.1.2.. One-electron oxidative additions
  • 3.2.. Reductive eliminations
  • References
  • 4.. Molecular nonrigidity
  • 4.1.. Pseudorotation
  • 4.2.. Nonrigidity of metal carbonyls
  • 4.3.. [(Fulvalene)tetracarbonyldiruthenium]. Storage of light energy
  • References
  • 5.. Electron-transfer reactions
  • 5.1.. Introduction
  • 5.2.. Franck-Condon principle
  • 5.3.. Outer-sphere electron transfer
  • 5.3.1.. Marcus theory of outer-sphere electron transfer
  • 5.3.2.. Long-range electron transfers in biological systems
  • 5.4.. Inner-sphere electron transfer
  • 5.5.. Reactions with solvated electrons
  • References
  • Bibliography
  • 6.. Reactions of free radicals
  • 6.1.. Chain reactions
  • 6.2.. Stability of the metal-carbon [sigma] bond
  • 6.3.. Oxidation of transition metal complexes by hydroxyl radicals
  • 6.4.. Reduction of transition metal complexes by organic radicals
  • References
  • 7.. Mechanism of vitamin B[subscript 12] action
  • 7.1.. Introduction
  • 7.2.. Mechanism of vitamin B[subscript 12] activity
  • 7.3.. Difficulties in distinguishing D and I[subscript d] mechanisms
  • References
  • 8.. Kinetics and mechanisms of metalloporphyrin reactions
  • 8.1.. Introduction
  • 8.2.. Mechanism of metal incorporation into the porphyrin complex
  • 8.3.. Metalloporphyrins as oxygen carriers
  • 8.4.. Substitutions on metalloporphyrins
  • 8.4.1.. Imidazole, an essential component of many biological systems; the nature of metal bonding
  • 8.4.2.. Comparison of the bonding modes of imidazole and pyridine to a metal
  • 8.5.. Nature of the bond of amine ligands to cobalt(III) in porphyrins; the relation of [sigma] to [pi] bonding
  • 8.6.. Catalytic action of metalloporphyrins
  • 8.7.. Why only porphyrins, but not their isomers, in nature
  • 8.8.. Nitrosoamine complex of metalloporphyrin, a probable intermediate in the mechanism of nitrosoamine activation of cancer
  • 8.9.. The sequence of bonded metalloporphyrins--a molecular photonic wire
  • 8.10.. Metalloporphyrins, metallophthalocyanines and analogous complexes in photodynamic therapy of cancer
  • 8.10.1.. Introduction
  • 8.10.2.. Red light for photodynamic therapy: metallotexaphyrins of lutetium and gadolinium as photosensitizers in cancer therapy
  • 8.11.. Some models of metalloenzymes
  • References
  • 9.. Metallocenes, strong electron donors
  • 9.1.. Introduction
  • 9.2.. Bonding in the [eta superscript 5]-(C[subscript 5]H[subscript 5])[subscript 2 Fe] complexes
  • 9.3.. Stability of [alpha]-metallocenyl carbocations
  • 9.4.. Secondary [alpha]-deuterium kinetic isotope effect and the structure of ferrocenylmethyl carbocation type transition state
  • 9.4.1.. High secondary [alpha]-deuterium kinetic isotope effects for the primary carbon-oxygen cleavage in formolysis and acetolysis of dideuterioferrocenylmethyl benzoate
  • 9.4.2.. Possible contribution of tunneling to the high secondary [alpha]-deuterium kinetic isotope effect
  • 9.5.. Ferrocene ability to stabilize a carbenium ion
  • 9.5.1.. Solvent variations and the rates of ferrocenylmethyl ester solvolyses
  • 9.5.2.. Relative rates of ferrocenylmethyl benzoate solvolyses in formic and acetic acid
  • 9.6.. Antitumor activity of metallocenes
  • 9.7.. Ferrocenes as nucleophilic catalysts can mediate kinetic resolution
  • 9.8.. Ferrocenes and molecular recognition
  • 9.9.. Metal-metal interactions in linked metallocenes
  • 9.9.1.. Metallocene derivatives
  • 9.9.2.. Concluding remarks
  • References
  • 10.. Metal complexes in tumor therapy
  • 10.1.. Introduction
  • 10.1.1.. Chemotherapy of cancer
  • 10.2.. Complexes of the cis-PtL[subscript 2]X[subscript 2] type as antitumor agents
  • 10.3.. Second generation of cisplatin analogs
  • 10.3.1.. The mechanism of antitumor activity of cisplatin
  • 10.4.. Gold complexes as antitumor agents
  • 10.5.. Antitumor activity of organogermanium compounds
  • References
  • 11.. Heterogeneous and homogeneous catalysis by metals and transition metal complexes
  • 11.1.. Introduction
  • 11.2.. Heterogeneous catalysis by metals and metal oxides
  • 11.3.. Homogeneous catalysis by transition metal complexes
  • 11.3.1.. Hydroformylation of unsaturated compounds
  • 11.3.2.. Hydrocyanation of alkenes
  • 11.3.3.. Polymerization of alkenes and alkynes; Ziegler-Natta catalysts
  • References
  • 12.. Chemical and biological nitrogen fixation
  • 12.1.. Introduction
  • 12.2.. Biological nitrogen fixation
  • 12.2.1.. Nitrogen fixation in bacteria
  • 12.3.. Reactions of N[subscript 2] with transition metal complexes
  • References
  • 13.. Cascade molecules (dendrimers)
  • 13.1.. Introduction
  • 13.2.. Methods of dendrimer preparation
  • References
  • 14.. Metal complexes with short memory effect
  • 14.1.. Introduction
  • 14.2.. Magnetic materials and information storage
  • 14.3.. Hyperthermy treatment of some tumors
  • References
  • 15.. Some recent publications in the scientific spotlight
  • 15.1.. Introduction
  • 15.2.. C-Binding vs. N-binding of imidazoles to metal fragments
  • References (section 15.2)
  • 15.3.. Hexaphyrin, an expanded porphyrin ligand for the UO[subscript 2 superscript 2+] and NpO[subscript 2 superscript +] coordination
  • References (section 15.3)
  • 15.4.. Alkane picosecond carbon-hydrogen bond cleavage at the iridium carbonyl center
  • References (section 15.4)
  • 15.5.. Photochemical activation of the N[identical with]N bond in a dimolybdenum-dinitrogen complex
  • References (section 15.5)
  • 15.6.. Separation and purification of olefins using dithiolene complexes
  • References (section 15.6)
  • 15.7.. Highly efficient ring-opening metathesis polymerization (ROMP)
  • References (section 15.7)
  • 15.8.. Supramolecular cluster catalysis: benzene hydrogenation catalyzed by a cationic triruthenium cluster
  • References (section 15.8)
  • 15.9.. A trimer of zinc(II), ruthenium(II), and tin(IV) porphyrins called the trinity of metals
  • References (section 15.9)
  • 15.10.. Bis(1,2,3,4-[eta superscript 4]-anthracene)cobaltate(1-)
  • References (section 15.10)
  • 15.11.. sp-Carbon chains surrounded by sp[superscript 3]-carbon double helices: a class of molecules accessible by self-assembly and models for "insulated" molecular-scale devices
  • References (section 15.11)
  • 15.12.. Ferrocene and fullerene hybrid
  • References (section 15.12)
  • Epilogue
  • Appendix
  • Physical and chemical constants
  • Conversion factors
  • Some often used abbreviations
  • Prefixes
  • Electronic configurations of the elements
  • Index