Fundamentals of ocean climate models /

Saved in:
Bibliographic Details
Author / Creator:Griffies, Stephen M., 1962-
Imprint:Princeton, N.J. : Princeton University Press, c2004.
Description:xxxiv, 518 p. : ill. ; 27 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5360785
Hidden Bibliographic Details
ISBN:0691118922 (acid-free paper)
Notes:Includes bibliographical references (p. [493]-509) and index.
Table of Contents:
  • Foreword XIII
  • Preface XV
  • Acknowledgments XXV
  • About the cover XXVII
  • List of symbols XXIX
  • Chapter 1. Ocean Climate Models
  • 1 1.1. Ocean models as tools for ocean science
  • 1 1.2. Ocean climate models
  • 2 1.3. Challenges of climate change
  • Part 1. Fundamental Ocean Equations
  • Chapter 2. Basics Of Ocean Fluid Mechanics
  • 7 2.1. Some fundamental ocean processes
  • 7 2.2. The continuum hypothesis
  • 9 2.3. Kinematics of fluid motion
  • 0 2.4. Kinematical and dynamical approximations
  • 6 2.5. Averaging over scales and realizations
  • 0 2.6. Numerical discretization
  • 1 2.7. Chapter summary
  • Chapter 3. Kinematics
  • 4 3.1. Introduction
  • 4 3.2. Mathematical preliminaries
  • 4 3.3. The divergence theorem and budget analyses
  • 9 3.4. Volume and mass conserving kinematics
  • 1 3.5. Chapter summary
  • Chapter 4. Dynamics
  • 2 4.1. Introduction
  • 2 4.2. Motion on a rotating sphere
  • 3 4.3. Principles of continuum dynamics
  • 7 4.4. Dynamics of fluid parcels
  • 1 4.5. Hydrostatic pressure
  • 6 4.6. Dynamics of hydrostatic fluid columns
  • 8 4.7. Fluid motion in a rapidly rotating system
  • 2 4.8. Vertical stratification
  • 8 4.9. Vorticity and potential vorticity
  • 0 4.1. 0 Particle dynamics on a rotating sphere
  • 5 4.1. 1 Symmetry and conservation laws
  • 0 4.1. 2 Chapter summary
  • Chapter 5. Thermo-Hydrodynamics
  • 7 5.1. General types of ocean tracers
  • 7 5.2. Basic equilibrium thermodynamics
  • 1 5.3. Energy of a fluid parcel
  • 5 5.4. Global mechanical energy balance
  • 5 5.5. Basic non-equilibrium thermodynamics
  • 0 5.6. Thermodynamical tracers
  • 1 5.7. Ocean density
  • 4 5.8. Chapter summary
  • Chapter 6. Generalized Vertical Coordinates
  • 1 6.1. Introduction
  • 1 6.2. Concerning the choice of vertical coordinate
  • 2 6.3. Generalized surfaces
  • 8 6.4. Local orthonormal coordinates
  • 0 6.5. Mathematics of generalized vertical coordinates
  • 1 6.6. Metric tensors
  • 6 6.7. The dia-surface velocity component
  • 8 6.8. Conservation of mass and volume for parcels
  • 1 6.9. Kinematic boundary conditions
  • 3 6.1. 0 Primitive equations
  • 5 6.1. 1 Transformation of SGS tracer flux components
  • 7 6.1. 2 Chapter summary
  • Part 2. averaged Descriptions
  • Chapter 7. Concerni Ng Unresolved Physics
  • 5 7.1. Represented dynamics and parameterized physics
  • 5 7.2. Lateral (neutral) and vertical processes
  • 7 7.3. Basic mechanisms for dianeutral transport
  • 9 7.4. Dianeutral transport in models
  • 1 7.5. Numerically induced spurious dianeutral transport
  • 6 7.6. Chapter summary
  • Chapter 8. Eulerian Averaged Equations
  • 9 8.1. Introduction
  • 9 8.2. The nonhydrostatic shallow ocean equations
  • 1 8.3. Averaged kinematics
  • 3 8.4. Averaged kinematics over finite domains
  • 4 8.5. Averaged tracer
  • 9 8.6. Averaged momentum budget
  • 2 8.7. Summary of the Eulerian averaged equations
  • 3 8.8. Mapping to ocean model variables
  • 5 8.9. Chapter summary
  • Chapter 9. Kinematics Of An Isentropic Ensemble
  • 9 9.1. Parameterizing mesoscale eddies
  • 9 9.2. Advection and skewsion
  • 1 9.3. Volume conservation
  • 4 9.4. Ensemble mean tracer equation
  • 3 9.5. Quasi-Stokes transport in z-models
  • 6 9.6. Chapter summary
  • Part 3. Semi-Discrete Equations And Algorithms
  • Chapter 10. Discretization Basics
  • 10.1. Discretization methods
  • 10.2. An introduction to Arakawa grids
  • 10.3. Time stepping
  • 10.4. Chapter summary
  • Chapter 11. Mass And Tracer Budgets
  • 11.1. Summary of the continuous model equations
  • 11.2. Tracer and mass/volume compatibility
  • 11.3. Mass budget for a grid cell
  • 11.4. Mass budget for a discrete fluid column
  • 11.5. Tracer budget for a grid cell
  • 11.6. Fluxes for turbulence mixed layer schemes
  • 11.7. Flux plus restore boundary conditions
  • 11.8. Z-like vertical coordinate models
  • 11.9. Chapter summary
  • Chapter 12. Algorithms for hydrostatic ocean model