Insect physiological ecology : mechanisms and patterns /

Saved in:
Bibliographic Details
Author / Creator:Chown, Steven.
Imprint:Oxford : Oxford University Press, 2004.
Description:ix, 243 p. : ill. ; 25 cm.
Language:English
Subject:
Format: E-Resource Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5370943
Hidden Bibliographic Details
Other authors / contributors:Nicolson, Sue W.
ISBN:0198515499
0198515480
Notes:Bibliography.
Also available on the Internet.
Table of Contents:
  • 1. Introduction
  • 1.1. Physiological variation
  • 1.2. How much variation?
  • 1.3. Diversity at large scales: macrophysiology
  • 1.4. Growing integration
  • 1.5. This book
  • 2. Nutritional physiology and ecology
  • 2.1. Method and measurement
  • 2.1.1. Artificial diets
  • 2.1.2. Indices of food conversion efficiency
  • 2.1.3. Use of a geometric framework
  • 2.2. Physiological aspects of feeding behaviour
  • 2.2.1. Optimal feeding in caterpillars
  • 2.2.2. Regulation of meal size: volumetric or nutritional feedback
  • 2.2.3. Regulation of protein and carbohydrate intake
  • 2.3. Digestion and absorption of nutrients
  • 2.3.1. Digestive enzymes and the organization of digestion
  • 2.3.2. Gut physicochemistry of caterpillars
  • 2.3.3. Absorption of nutrients
  • 2.4. Overcoming problems with plant feeding
  • 2.4.1. Cellulose digestion: endogenous or microbial?
  • 2.4.2. Nitrogen as a limiting nutrient
  • 2.4.3. Secondary plant compounds
  • 2.5. Growth, development, and life history
  • 2.5.1. Development time versus body size
  • 2.5.2. Developmental trade-offs between body parts
  • 2.6. Temperature and growth
  • 2.6.1. Thermal effects on feeding and growth
  • 2.6.2. Interactions with food quality
  • 3. Metabolism and gas exchange
  • 3.1. Method and measurement
  • 3.2. Metabolism
  • 3.2.1. Aerobic pathways
  • 3.2.2. Anaerobic pathways and environmental hypoxia
  • 3.3. Gas exchange structures and principles
  • 3.3.1. Gas exchange and transport in insects
  • 3.3.2. Gas exchange principles
  • 3.4. Gas exchange and metabolic rate at rest
  • 3.4.1. Gas exchange patterns
  • 3.4.2. Discontinuous gas exchange cycles
  • 3.4.3. Variation in discontinuous gas exchange cycles
  • 3.4.4. Origin and adaptive value of the DGC
  • 3.4.5. Metabolic rate variation: size
  • 3.4.6. Metabolic rate variation: temperature and water availability
  • 3.5. Gas exchange and metabolic rate during activity
  • 3.5.1. Flight
  • 3.5.2. Crawling, running, carrying
  • 3.5.3. Feeding
  • 3.6. Metabolic rate and ecology
  • 4. Water balance physiology
  • 4.1. Water loss
  • 4.1.1. Cuticle
  • 4.1.2. Respiration
  • 4.1.3. Excretion
  • 4.2. Water gain
  • 4.2.1. Food
  • 4.2.2. Drinking
  • 4.2.3. Metabolism
  • 4.2.4. Water vapour absorption
  • 4.3. Osmoregulation
  • 4.3.1. Haemolymph composition
  • 4.3.2. Responses to osmotic stress
  • 4.3.3. Salt intake
  • 4.4. Desiccation resistance
  • 4.4.1. Microclimates
  • 4.4.2. Group effects
  • 4.4.3. Dormancy, size, and phylogeny
  • 4.5. The evidence for adaptation: Drosophila as a model
  • 5. Lethal temperature limits
  • 5.1. Method and measurement
  • 5.1.1. Rates of change
  • 5.1.2. Measures of thermal stress
  • 5.1.3. Exposure and recovery time
  • 5.2. Heat shock, cold shock, and rapid hardening
  • 5.2.1. Acclimation
  • 5.2.2. Heat shock
  • 5.2.3. Cold shock
  • 5.2.4. Relationships between heat and cold shock responses
  • 5.3. Programmed responses to cold
  • 5.3.1. Cold hardiness classifications
  • 5.3.2. Freeze intolerance
  • 5.3.3. Cryoprotective dehydration
  • 5.3.4. Freezing tolerance
  • 5.4. Large-scale patterns
  • 5.4.1. Cold tolerance strategies: phylogeny, geography, benefits
  • 5.4.2. The geography of upper and lower limits
  • 6. Thermoregulation
  • 6.1. Method and measurement
  • 6.2. Power output and temperature
  • 6.3. Behavioural regulation
  • 6.3.1. Microhabitats and activity
  • 6.3.2. Colour and body size
  • 6.3.3. Evaporative cooling in ectothermic cicadas
  • 6.4. Butterflies: interactions between levels
  • 6.4.1. Variation at the phosphoglucose isomerase locus
  • 6.4.2. Wing colour
  • 6.4.3. The influence of predation
  • 6.5. Regulation by endothermy
  • 6.5.1. Preflight warm-up
  • 6.5.2. Regulation of heat gain
  • 6.5.3. Regulation of heat loss
  • 6.6. Endothermy: ecological and evolutionary aspects
  • 6.6.1. Bees: body size and foraging
  • 6.6.2. Bees: food quality and body temperature
  • 7. Conclusion
  • 7.1. Spatial variation and its implications
  • 7.1.1. Decoupling of upper and lower lethal limits
  • 7.1.2. Latitudinal variation in species richness and generation time
  • 7.1.3. Spatial extent of the data
  • 7.2. Body size
  • 7.3. Interactions: internal and external
  • 7.3.1. Internal interactions
  • 7.3.2. External interactions
  • 7.3.3. Interactions: critical questions
  • 7.4. Climate change
  • 7.5. To conclude
  • References
  • Index