The quantum theory of light /

Saved in:
Bibliographic Details
Author / Creator:Loudon, Rodney
Edition:2nd ed.
Imprint:Oxford : Clarendon Press ; New York : Oxford University Press, 1983.
Description:xiv, 393 p. : ill. ; 24 cm.
Language:English
Series:Oxford science publications
Oxford science publications
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/544197
Hidden Bibliographic Details
ISBN:0198511558 (pbk.) : £15.00
0198511523 (hard)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Introduction: The photon
  • 1. Planck's radiation law and the Einstein coefficients
  • 1.1. Density of field modes in a cavity
  • 1.2. Quantization of the field energy
  • 1.3. Planck's law
  • 1.4. Fluctuations in photon number
  • 1.5. Einstein's A and B coefficients
  • 1.6. Characteristics of the three Einstein transitions
  • 1.7. Optical excitation of two-level atoms
  • 1.8. Theory of optical attenuation
  • 1.9. Population inversion: optical amplification
  • 1.10. The laser
  • 1.11. Radiation pressure
  • References
  • 2. Quantum mechanics of the atom-radiation interaction
  • 2.1. Time-dependent quantum mechanics
  • 2.2. Form of the interaction Hamiltonian
  • 2.3. Expressions for the Einstein coefficients
  • 2.4. The Dirac delta-function and Fermi's golden rule
  • 2.5. Radiative broadening and linear susceptibility
  • 2.6. Doppler broadening and composite lineshape
  • 2.7. The optical Bloch equations
  • 2.8. Power broadening
  • 2.9. Collision broadening
  • 2.10. Bloch equations and rate equations
  • References
  • 3. Classical theory of optical fluctuations and coherence
  • 3.1. Models of chaotic light sources
  • 3.2. The lossless optical beam-splitter
  • 3.3. The Mach-Zehnder interferometer
  • 3.4. Degree of first-order coherence
  • 3.5. Interference fringes and frequency spectra
  • 3.6. Intensity fluctuations of chaotic light
  • 3.7. Degree of second-order coherence
  • 3.8. The Brown-Twiss interferometer
  • 3.9. Semiclassical theory of optical detection
  • References
  • 4. Quantization of the radiation field
  • 4.1. Potential theory for the classical electromagnetic field
  • 4.2. The free classical field
  • 4.3. The quantum-mechanical harmonic oscillator
  • 4.4. Quantization of the electromagnetic field
  • 4.5. Canonical commutation relation
  • 4.6. Pure states and statistical mixtures
  • 4.7. Time development of quantum-optical systems
  • 4.8. Interaction of the quantized field with atoms
  • 4.9. Second quantization of the atomic Hamiltonian
  • 4.10. Photon absorption and emission rates
  • 4.11. The photon intensity operator
  • 4.12. Quantum degrees of first and second-order coherence
  • References
  • 5. Single-mode quantum optics
  • 5.1. Single-mode field operators
  • 5.2. Number states
  • 5.3. Coherent states
  • 5.4. Chaotic light
  • 5.5. The squeezed vacuum
  • 5.6. Squeezed coherent states
  • 5.7. Beam-splitter input-output relations
  • 5.8. Single-photon input
  • 5.9. Arbitrary single-arm input
  • 5.10. Nonclassical light
  • References
  • 6. Multimode and continuous-mode quantum optics
  • 6.1. Multimode states
  • 6.2. Continuous-mode field operators
  • 6.3. Number states
  • 6.4. Coherent states
  • 6.5. Chaotic light: photon bunching and antibunching
  • 6.6. The Mach-Zehnder interferometer
  • 6.7. Photon pair states
  • 6.8. Two-photon interference
  • 6.9. Squeezed light
  • 6.10. Quantum theory of direct detection
  • 6.11. Homodyne detection
  • 6.12. The electromagnetic vacuum
  • References
  • 7. Optical generation, attenuation and amplification
  • 7.1. Single-mode photon rate equations
  • 7.2. Solutions for fixed atomic populations
  • 7.3. Single-mode laser theory
  • 7.4. Fluctuations in laser light
  • 7.5. Travelling-wave attenuation
  • 7.6. Travelling-wave amplification
  • 7.7. Dynamics of the atom-radiation system
  • 7.8. The source-field expression
  • 7.9. Emission by a driven atom
  • References
  • 8. Resonance fluorescence and light scattering
  • 8.1. The scattering cross-section
  • 8.2. Resonance fluorescence
  • 8.3. Weak incident beam
  • 8.4. Single-atom resonance fluorescence
  • 8.5. Quantum jumps
  • 8.6. Two-photon cascade emission
  • 8.7. The Kramers-Heisenberg formula
  • 8.8. Elastic Rayleigh scattering
  • 8.9. Inelastic Raman scattering
  • References
  • 9. Nonlinear quantum optics
  • 9.1. The nonlinear susceptibility
  • 9.2. Electromagnetic field quantization in media
  • 9.3. Second-harmonic generation
  • 9.4. Parametric down-conversion
  • 9.5. Parametric amplification
  • 9.6. Self-phase modulation
  • 9.7. Single-beam two-photon absorption
  • 9.8. Conclusion
  • References
  • Index