Risk-neutral valuation : pricing and hedging of financial derivatives /

Saved in:
Bibliographic Details
Author / Creator:Bingham, N. H.
Edition:2nd ed.
Imprint:Sheffield, UK ; New York : Springer, c2004.
Description:xviii, 437 p. ; 25 cm.
Language:English
Series:Springer finance
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5540694
Hidden Bibliographic Details
Other authors / contributors:Kiesel, Rüdiger, 1962-
ISBN:1852334584 (hc : alk. paper)
Notes:Includes bibliographical references (p. [417]-432) and index.
Table of Contents:
  • Contents
  • Preface to the Second Edition Preface to the First Edition
  • 1. Derivative Background
  • 1.1. Financial Markets and Instruments
  • 1.1.1. Derivative Instruments
  • 1.1.2. Underlying Securities
  • 1.1.3. Markets
  • 1.1.4. Types of Traders
  • 1.1.5. Modeling Assumptions
  • 1.2. Arbitrage
  • 1.3. Arbitrage Relationships
  • 1.3.1. Fundamental Determinants of Option Values
  • 1.3.2. Arbitrage Bounds
  • 1.4. Single-period Market Models
  • 1.4.1. A Fundamental Example
  • 1.4.2. A Single-period Model
  • 1.4.3. A Few Financial-economic Considerations Exercises
  • 2. Probability Background
  • 2.1. Measure
  • 2.2. Integral
  • 2.3. Probability
  • 2.4. Equivalent Measures and Radon-Nikodym Derivatives
  • 2.5. Conditional Expectation
  • 2.6. Modes of Convergence
  • 2.7. Convolution and Characteristic Functions
  • 2.8. The Central Limit Theorem
  • 2.9. Asset Return Distributions
  • 2.10. In.nite Divisibility and the Levy-Khintchine Formula
  • 2.11. Elliptically Contoured Distributions
  • 2.12. Hyberbolic Distributions Exercises
  • 3. Stochastic Processes in Discrete Time
  • 3.1. Information and Filtrations
  • 3.2. Discrete-parameter Stochastic Processes
  • 3.3. De.nition and Basic Properties of Martingales
  • 3.4. Martingale Transforms
  • 3.5. Stopping Times and Optional Stopping
  • 3.6. The Snell Envelope and Optimal Stopping
  • 3.7. Spaces of Martingales
  • 3.8. Markov Chains Exercises
  • 4. Mathematical Finance in Discrete Time
  • 4.1. The Model
  • 4.2. Existence of Equivalent Martingale Measures
  • 4.2.1. The No-arbitrage Condition
  • 4.2.2. Risk-Neutral Pricing
  • 4.3. Complete Markets: Uniqueness of EMMs
  • 4.4. The Fundamental Theorem of Asset Pricing: Risk-Neutral Valuation
  • 4.5. The Cox-Ross-Rubinstein Model
  • 4.5.1. Model Structure
  • 4.5.2. Risk-neutral Pricing
  • 4.5.3. Hedging
  • 4.6. Binomial Approximations
  • 4.6.1. Model Structure
  • 4.6.2. The Black-Scholes Option Pricing Formula
  • 4.6.3. Further Limiting Models
  • 4.7. American Options
  • 4.7.1. Theory
  • 4.7.2. American Options in the CRR Model
  • 4.8. Further Contingent Claim Valuation in Discrete Time
  • 4.8.1. Barrier Options
  • 4.8.2. Lookback Options
  • 4.8.3. A Three-period Example
  • 4.9. Multifactor Models
  • 4.9.1. Extended Binomial Model
  • 4.9.2. Multinomial Models Exercises
  • 5. Stochastic Processes in Continuous Time
  • 5.1. Filtrations; Finite-dimensional Distributions
  • 5.2. Classes of Processes
  • 5.2.1. Martingales
  • 5.2.2. Gaussian Processes
  • 5.2.3. Markov Processes
  • 5.2.4. Diffusions
  • 5.3. Brownian Motion
  • 5.3.1. Definition and Existence
  • 5.3.2. Quadratic Variation of Brownian Motion
  • 5.3.3. Properties of Brownian Motion
  • 5.3.4. Brownian Motion in Stochastic Modeling
  • 5.4. Point Processes
  • 5.4.1. Exponential Distribution
  • 5.4.2. The Poisson Process
  • 5.4.3. Compound Poisson Processes
  • 5.4.4. Renewal Processes
  • 5.5. Levy Processes
  • 5.5.1. Distributions
  • 5.5.2. Levy Processes
  • 5.5.3. Levy Processes and the Levy-Khintchine Formula
  • 5.6. Stochastic Integrals; Ito Calculus
  • 5.6.1. Stochastic Integration
  • 5.6.2. Ito's Lemma
  • 5.6.3. Geometric Brownian Motion
  • 5.7. Stochastic Calculus for Black-Scholes Models
  • 5.8. Stochastic Differential Equations
  • 5.9. Likelihood Estimation for Diffusions
  • 5.10. Martingales, Local Martingales and Semi-martingales
  • 5.10.1. Definitions
  • 5.10.2. Semi-martingale Calculus
  • 5.10.3. Stochastic Exponentials
  • 5.10.4. Semi-martingale Characteristics
  • 5.11. Weak Convergence of Stochastic Processes
  • 5.11.1. The Spaces Cd and Dd
  • 5.11.2. Definition and Motivation
  • 5.11.3. Basic Theorems of Weak Convergence
  • 5.11.4. Weak Convergence Results for Stochastic Integrals
  • Exercises
  • 6. Mathematical Finance in Continuous Time
  • 6.1. Continuous-time Financial Market Models
  • 6.1.1. The Financial Market Model
  • 6.1.2. Equivalent Martingale Measures
  • 6.1.3. Risk-neutral Pricing
  • 6.1.4. Changes of Numeraire
  • 6.2. The Generalized Black-Scholes Model
  • 6.2.1. The Model
  • 6.2.2. Pricing and Hedging Contingent Claims
  • 6.2.3. The Greeks
  • 6.2.4. Volatility
  • 6.3. Further Contingent Claim Valuation
  • 6.3.1. American Options
  • 6.3.2. Asian Options
  • 6.3.3. Barrier Options
  • 6.3.4. Lookback Options
  • 6.3.5. Binary Options
  • 6.4. Discrete- versus Continuous-time Market Models
  • 6.4.1. Discrete- to Continuous-time
  • Convergence Reconsidered
  • 6.4.2. Finite Market Approximations
  • 6.4.3. Examples of Finite Market Approximat