Evaluating Feynman integrals /

Saved in:
Bibliographic Details
Author / Creator:Smirnov, V. A. (Vladimir Alexandrovich), 1951-
Imprint:Berlin : Springer, 2004.
Description:ix, 244 p. : ill. ; 25 cm.
Language:English
Series:Springer tracts in modern physics, 0081-3869 ; v. 211
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5548591
Hidden Bibliographic Details
ISBN:3540239332 (hd.bd.)
Table of Contents:
  • 1. Introduction
  • 1.1. Notation
  • References
  • 2. Feynman Integrals: Basic Definitions and Tools
  • 2.1. Feynman Rules and Feynman Integrals
  • 2.2. Divergences
  • 2.3. Alpha Representation
  • 2.4. Regularization
  • 2.5. Properties of Dimensionally Regularized Feynman Integrals
  • References
  • 3. Evaluating by Alpha and Feynman Parameters
  • 3.1. Simple One- and Two-Loop Formulae
  • 3.2. Auxiliary Tricks
  • 3.2.1. Recursively One-Loop Feynman Integrals
  • 3.2.2. Partial Fractions
  • 3.2.3. Dealing with Numerators
  • 3.3. One-Loop Examples
  • 3.4. Feynman Parameters
  • 3.5. Two-Loop Examples
  • References
  • 4. Evaluating by MB Representation
  • 4.1. One-Loop Examples
  • 4.2. Multiple MB Integrals
  • 4.3. More One-Loop Examples
  • 4.4. Two-Loop Massless Examples
  • 4.5. Two-Loop Massive Examples
  • 4.6. Three-Loop Examples
  • 4.7. More Loops
  • 4.8. MB Representation versus Expansion by Regions
  • 4.9. Conclusion
  • References
  • 5. IBP and Reduction to Master Integrals
  • 5.1. One-Loop Examples
  • 5.2. Two-Loop Examples
  • 5.3. Reduction of On-Shell Massless Double Boxes
  • 5.4. Conclusion
  • References
  • 6. Reduction to Master Integrals by Baikov's Method
  • 6.1. Basic Parametric Representation
  • 6.2. Constructing Coefficient Functions. Simple Examples
  • 6.3. General Recipes. Complicated Examples
  • 6.4. Two-Loop Feynman Integrals for the Heavy Quark Potential
  • 6.5. Conclusion
  • References
  • 7. Evaluation by Differential Equations
  • 7.1. One-Loop Examples
  • 7.2. Two-Loop Example
  • 7.3. Conclusion
  • References
  • A. Tables
  • A.1. Table of Integrals
  • A.2. Some Useful Formulae
  • B. Some Special Functions
  • References
  • C. Summation Formulae
  • C.1. Some Number Series
  • C.2. Power Series of Levels 3 and 4 in Terms of Polylogarithms
  • C.3. Inverse Binomial Power Series up to Level 4
  • C.4. Power Series of Levels 5 and 6 in Terms of HPL
  • References
  • D. Table of MB Integrals
  • D.1. MB Integrals with Four Gamma Functions
  • D.2. MB Integrals with Six Gamma Functions
  • E. Analysis of Convergence and Sector Decompositions
  • E.1. Analysis of Convergence
  • E.2. Practical Sector Decompositions
  • References
  • F. A Brief Review of Some Other Methods
  • F.1. Dispersion Integrals
  • F.2. Gegenbauer Polynomial x-Space Technique
  • F.3. Gluing
  • F.4. Star-Triangle Relations
  • F.5. IR Rearrangement and R *
  • F.6. Difference Equations
  • F.7. Experimental Mathematics and PSLQ
  • References
  • List of Symbols
  • Index