Mathematica laboratories for mathematical statistics : emphasizing simulation and computer intensive methods /

Saved in:
Bibliographic Details
Author / Creator:Baglivo, Jenny A. (Jenny Antoinette)
Imprint:Philadelphia, Pa. : Society for Industrial and Applied Mathematics ; Alexandria, Va. : American Statistical Association, c2005.
Description:xx, 260 p. : ill. ; 26 cm + 1 CD-ROM (4 3/4 in.).
Language:English
Series:ASA-SIAM series on statistics and applied probability
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5549183
Hidden Bibliographic Details
ISBN:0898715660 (pbk.)
Notes:Includes bibliographical references (p. 241-249) and index.
Table of Contents:
  • Preface
  • 1. Introductory Probability Concepts
  • 1.1. Definitions
  • 1.2. Kolmogorov axioms
  • 1.3. Counting methods
  • 1.3.1. Permutations and combinations
  • 1.3.2. Partitioning sets
  • 1.3.3. Generating functions
  • 1.4. Conditional probability
  • 1.4.1. Law of total probability
  • 1.4.2. Bayes rule
  • 1.5. Independent events
  • 1.5.1. Repeated trials and mutual independence
  • 1.6. Laboratory problems
  • 1.6.1. Laboratory: Introductory concepts
  • 1.6.2. Additional problem notebooks
  • 2. Discrete Probability Distributions
  • 2.1. Definitions
  • 2.1.1. PDF and CDF for discrete distributions
  • 2.2. Univariate distributions
  • 2.2.1. Example: Discrete uniform distribution
  • 2.2.2. Example: Hypergeometric distribution
  • 2.2.3. Distributions related to Bernoulli experiments
  • 2.2.4. Simple random samples
  • 2.2.5. Example: Poisson distribution
  • 2.3. Joint distributions
  • 2.3.1. Bivariate distributions; marginal distributions
  • 2.3.2. Conditional distributions; independence
  • 2.3.3. Example: Bivariate hypergeometric distribution
  • 2.3.4. Example: Trinomial distribution
  • 2.3.5. Survey analysis
  • 2.3.6. Discrete multivariate distributions
  • 2.3.7. Probability generating functions
  • 2.4. Laboratory problems
  • 2.4.1. Laboratory: Discrete models
  • 2.4.2. Additional problem notebooks
  • 3. Continuous Probability Distributions
  • 3.1. Definitions
  • 3.1.1. PDF and CDF for continuous random variables
  • 3.1.2. Quantiles; percentiles
  • 3.2. Univariate distributions
  • 3.2.1. Example: Uniform distribution
  • 3.2.2. Example: Exponential distribution
  • 3.2.3. Euler gamma function
  • 3.2.4. Example: Gamma distribution
  • 3.2.5. Distributions related to Poisson processes
  • 3.2.6. Example: Cauchy distribution
  • 3.2.7. Example: Normal or Gaussian distribution
  • 3.2.8. Example: Laplace distribution
  • 3.2.9. Transforming continuous random variables
  • 3.3. Joint distributions
  • 3.3.1. Bivariate distributions; marginal distributions
  • 3.3.2. Conditional distributions; independence
  • 3.3.3. Example: Bivariate uniform distribution
  • 3.3.4. Example: Bivariate normal distribution
  • 3.3.5. Transforming continuous random variables
  • 3.3.6. Continuous multivariate distributions
  • 3.4. Laboratory problems
  • 3.4.1. Laboratory: Continuous models
  • 3.4.2. Additional problem notebooks
  • 4. Mathematical Expectation
  • 4.1. Definitions and properties
  • 4.1.1. Discrete distributions
  • 4.1.2. Continuous distributions
  • 4.1.3. Properties
  • 4.2. Mean, variance, standard deviation
  • 4.2.1. Properties
  • 4.2.2. Chebyshev inequality
  • 4.2.3. Markov inequality
  • 4.3. Functions of two or more random variables
  • 4.3.1. Properties
  • 4.3.2. Covariance, correlation
  • 4.3.3. Sample summaries
  • 4.3.4. Conditional expectation; regression
  • 4.4. Linear functions of random variables
  • 4.4.1. Independent normal random variables
  • 4.5. Laboratory problems
  • 4.5.1. Laboratory: Mathematical expectation
  • 4.5.2. Additional problem notebooks
  • 5. Limit Theorems
  • 5.1. Definitions
  • 5.2. Law of large numbers
  • 5.2.1. Example: Monte Carlo evaluation of integrals
  • 5.3. Central limit theorem
  • 5.3.1. Continuity correction
  • 5.3.2. Special cases
  • 5.4. Moment generating functions
  • 5.4.1. Method of moment generating functions
  • 5.4.2. Relationship to the central limit theorem
  • 5.5. Laboratory problems
  • 5.5.1. Laboratory: Sums and averages
  • 5.5.2. Additional problem notebooks
  • 6. Transition to Statistics
  • 6.1. Distributions related to the normal distribution
  • 6.1.1. Chi-square distribution
  • 6.1.2. Student t distribution
  • 6.1.3. F ratio distribution
  • 6.2. Random samples from normal distributions
  • 6.2.1. Sample mean, sample variance
  • 6.2.2. Approximate standardization of the sample mean
  • 6.2.3. Ratio of sample variances
  • 6.3. Multinomial experiments
  • 6.3.1. Multinomial distribution
  • 6.3.2. Goodness-of-fit: Known model
  • 6.3.3. Goodness-of-fit: Estimated model
  • 6.4. Laboratory problems
  • 6.4.1. Laboratory: Transition to statistics
  • 6.4.2. Additional problem notebooks
  • 7. Estimation Theory
  • 7.1. Definitions
  • 7.2. Properties of point estimators
  • 7.2.1. Bias; unbiased estimator
  • 7.2.2. Efficiency for unbiased estimators
  • 7.2.3. Mean squared error
  • 7.2.4. Consistency
  • 7.3. Interval estimation
  • 7.3.1. Example: Normal distribution
  • 7.3.2. Approximate intervals for means
  • 7.4. Method of moments estimation
  • 7.4.1. Single parameter estimation
  • 7.4.2. Multiple parameter estimation
  • 7.5. Maximum likelihood estimation
  • 7.5.1. Single parameter estimation
  • 7.5.2. Cramer-Rao lower bound
  • 7.5.3. Approximate sampling distribution
  • 7.5.4. Multiple parameter estimation
  • 7.6. Laboratory problems
  • 7.6.1. Laboratory: Estimation theory
  • 7.6.2. Additional problem notebooks
  • 8. Hypothesis Testing Theory
  • 8.1. Definitions
  • 8.1.1. Neyman-Pearson framework
  • 8.1.2. Equivalent tests
  • 8.2. Properties of tests
  • 8.2.1. Errors, size, significance level
  • 8.2.2. Power, power function
  • 8.3. Example: Normal distribution
  • 8.3.1. Tests of [mu] = [mu subscript 0]
  • 8.3.2. Tests of [sigma superscript 2] = [sigma superscript 2 subscript o]
  • 8.4. Example: Bernoulli/binomial distribution
  • 8.5. Example: Poisson distribution
  • 8.6. Approximate tests of [mu] = [mu subscript o]
  • 8.7. Likelihood ratio tests
  • 8.7.1. Likelihood ratio statistic; Neyman-Pearson lemma
  • 8.7.2. Generalized likelihood ratio tests
  • 8.7.3. Approximate sampling distribution
  • 8.8. Relationship with confidence intervals
  • 8.9. Laboratory problems
  • 8.9.1. Laboratory: Hypothesis testing
  • 8.9.2. Additional problem notebooks
  • 9. Order Statistics and Quantiles
  • 9.1. Order statistics
  • 9.1.1. Approximate mean and variance
  • 9.2. Confidence intervals for quantiles
  • 9.2.1. Approximate distribution of the sample median
  • 9.2.2. Exact confidence interval procedure
  • 9.3. Sample quantiles
  • 9.3.1. Sample quartiles, sample IQR
  • 9.3.2. Box plots
  • 9.4. Laboratory problems
  • 9.4.1. Laboratory: Order statistics and quantiles
  • 9.4.2. Additional problem notebooks
  • 10. Two Sample Analysis
  • 10.1. Normal distributions: Difference in means
  • 10.1.1. Known variances
  • 10.1.2. Pooled t methods
  • 10.1.3. Welch t methods
  • 10.2. Normal distributions: Ratio of variances
  • 10.3. Large sample: Difference in means
  • 10.4. Rank sum test
  • 10.4.1. Rank sum statistic
  • 10.4.2. Tied observations; midranks
  • 10.4.3. Mann-Whitney U statistic
  • 10.4.4. Shift models
  • 10.5. Sampling models
  • 10.5.1. Population model
  • 10.5.2. Randomization model
  • 10.6. Laboratory problems
  • 10.6.1. Laboratory: Two sample analysis
  • 10.6.2. Additional problem notebooks
  • 11. Permutation Analysis
  • 11.1. Introduction
  • 11.1.1. Permutation tests
  • 11.1.2. Example: Difference in means test
  • 11.1.3. Example: Smirnov two sample test
  • 11.2. Paired sample analysis
  • 11.2.1. Example: Signed rank test
  • 11.2.2. Shift models
  • 11.2.3. Example: Fisher symmetry test
  • 11.3. Correlation analysis
  • 11.3.1. Example: Correlation test
  • 11.3.2. Example: Rank correlation test
  • 11.4. Additional tests and extensions
  • 11.4.1. Example: One sample trend test
  • 11.4.2. Example: Two sample scale test
  • 11.4.3. Stratified analyses
  • 11.5. Laboratory problems
  • 11.5.1. Laboratory: Permutation analysis
  • 11.5.2. Additional problem notebooks
  • 12. Bootstrap Analysis
  • 12.1. Introduction
  • 12.1.1. Approximate conditional estimation
  • 12.2. Bootstrap estimation
  • 12.2.1. Error distribution
  • 12.2.2. Simple approximate confidence interval procedures
  • 12.2.3. Improved intervals: Nonparametric case
  • 12.3. Applications of bootstrap estimation
  • 12.3.1. Single random sample
  • 12.3.2. Independent random samples
  • 12.4. Bootstrap hypothesis testing
  • 12.5. Laboratory problems
  • 12.5.1. Laboratory: Bootstrap analysis
  • 12.5.2. Additional problem notebooks
  • 13. Multiple Sample Analysis
  • 13.1. One-way layout
  • 13.1.1. Example: Analysis of variance
  • 13.1.2. Example: Kruskal-Wallis test
  • 13.1.3. Example: Permutation f test
  • 13.2. Blocked design
  • 13.2.1. Example: Analysis of variance
  • 13.2.2. Example: Friedman test
  • 13.3. Balanced two-way layout
  • 13.3.1. Example: Analysis of variance
  • 13.3.2. Example: Permutation f tests
  • 13.4. Laboratory problems
  • 13.4.1. Laboratory: Multiple sample analysis
  • 13.4.2. Additional problem notebooks
  • 14. Linear Least Squares Analysis
  • 14.1. Simple linear model
  • 14.1.1. Least squares estimation
  • 14.1.2. Permutation confidence interval for slope
  • 14.2. Simple linear regression
  • 14.2.1. Confidence interval procedures
  • 14.2.2. Predicted responses and residuals
  • 14.2.3. Goodness-of-fit
  • 14.3. Multiple linear regression
  • 14.3.1. Least squares estimation
  • 14.3.2. Analysis of variance
  • 14.3.3. Confidence interval procedures
  • 14.3.4. Regression diagnostics
  • 14.4. Bootstrap methods
  • 14.5. Laboratory problems
  • 14.5.1. Laboratory: Linear least squares analysis
  • 14.5.2. Additional problem notebooks
  • 15. Contingency Table Analysis
  • 15.1. Independence analysis
  • 15.1.1. Example: Pearson's chi-square test
  • 15.1.2. Example: Rank correlation test
  • 15.2. Homogeneity analysis
  • 15.2.1. Example: Pearson's chi-square test
  • 15.2.2. Example: Kruskal-Wallis test
  • 15.3. Permutation chi-square tests
  • 15.4. Fourfold tables
  • 15.4.1. Odds ratio analysis
  • 15.4.2. Small sample analyses
  • 15.5. Laboratory problems
  • 15.5.1. Laboratory: Contingency table analysis
  • 15.5.2. Additional problem notebooks
  • Bibliography
  • Index