Mathematica laboratories for mathematical statistics : emphasizing simulation and computer intensive methods /
Saved in:
Author / Creator: | Baglivo, Jenny A. (Jenny Antoinette) |
---|---|
Imprint: | Philadelphia, Pa. : Society for Industrial and Applied Mathematics ; Alexandria, Va. : American Statistical Association, c2005. |
Description: | xx, 260 p. : ill. ; 26 cm + 1 CD-ROM (4 3/4 in.). |
Language: | English |
Series: | ASA-SIAM series on statistics and applied probability |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/5549183 |
Table of Contents:
- Preface
- 1. Introductory Probability Concepts
- 1.1. Definitions
- 1.2. Kolmogorov axioms
- 1.3. Counting methods
- 1.3.1. Permutations and combinations
- 1.3.2. Partitioning sets
- 1.3.3. Generating functions
- 1.4. Conditional probability
- 1.4.1. Law of total probability
- 1.4.2. Bayes rule
- 1.5. Independent events
- 1.5.1. Repeated trials and mutual independence
- 1.6. Laboratory problems
- 1.6.1. Laboratory: Introductory concepts
- 1.6.2. Additional problem notebooks
- 2. Discrete Probability Distributions
- 2.1. Definitions
- 2.1.1. PDF and CDF for discrete distributions
- 2.2. Univariate distributions
- 2.2.1. Example: Discrete uniform distribution
- 2.2.2. Example: Hypergeometric distribution
- 2.2.3. Distributions related to Bernoulli experiments
- 2.2.4. Simple random samples
- 2.2.5. Example: Poisson distribution
- 2.3. Joint distributions
- 2.3.1. Bivariate distributions; marginal distributions
- 2.3.2. Conditional distributions; independence
- 2.3.3. Example: Bivariate hypergeometric distribution
- 2.3.4. Example: Trinomial distribution
- 2.3.5. Survey analysis
- 2.3.6. Discrete multivariate distributions
- 2.3.7. Probability generating functions
- 2.4. Laboratory problems
- 2.4.1. Laboratory: Discrete models
- 2.4.2. Additional problem notebooks
- 3. Continuous Probability Distributions
- 3.1. Definitions
- 3.1.1. PDF and CDF for continuous random variables
- 3.1.2. Quantiles; percentiles
- 3.2. Univariate distributions
- 3.2.1. Example: Uniform distribution
- 3.2.2. Example: Exponential distribution
- 3.2.3. Euler gamma function
- 3.2.4. Example: Gamma distribution
- 3.2.5. Distributions related to Poisson processes
- 3.2.6. Example: Cauchy distribution
- 3.2.7. Example: Normal or Gaussian distribution
- 3.2.8. Example: Laplace distribution
- 3.2.9. Transforming continuous random variables
- 3.3. Joint distributions
- 3.3.1. Bivariate distributions; marginal distributions
- 3.3.2. Conditional distributions; independence
- 3.3.3. Example: Bivariate uniform distribution
- 3.3.4. Example: Bivariate normal distribution
- 3.3.5. Transforming continuous random variables
- 3.3.6. Continuous multivariate distributions
- 3.4. Laboratory problems
- 3.4.1. Laboratory: Continuous models
- 3.4.2. Additional problem notebooks
- 4. Mathematical Expectation
- 4.1. Definitions and properties
- 4.1.1. Discrete distributions
- 4.1.2. Continuous distributions
- 4.1.3. Properties
- 4.2. Mean, variance, standard deviation
- 4.2.1. Properties
- 4.2.2. Chebyshev inequality
- 4.2.3. Markov inequality
- 4.3. Functions of two or more random variables
- 4.3.1. Properties
- 4.3.2. Covariance, correlation
- 4.3.3. Sample summaries
- 4.3.4. Conditional expectation; regression
- 4.4. Linear functions of random variables
- 4.4.1. Independent normal random variables
- 4.5. Laboratory problems
- 4.5.1. Laboratory: Mathematical expectation
- 4.5.2. Additional problem notebooks
- 5. Limit Theorems
- 5.1. Definitions
- 5.2. Law of large numbers
- 5.2.1. Example: Monte Carlo evaluation of integrals
- 5.3. Central limit theorem
- 5.3.1. Continuity correction
- 5.3.2. Special cases
- 5.4. Moment generating functions
- 5.4.1. Method of moment generating functions
- 5.4.2. Relationship to the central limit theorem
- 5.5. Laboratory problems
- 5.5.1. Laboratory: Sums and averages
- 5.5.2. Additional problem notebooks
- 6. Transition to Statistics
- 6.1. Distributions related to the normal distribution
- 6.1.1. Chi-square distribution
- 6.1.2. Student t distribution
- 6.1.3. F ratio distribution
- 6.2. Random samples from normal distributions
- 6.2.1. Sample mean, sample variance
- 6.2.2. Approximate standardization of the sample mean
- 6.2.3. Ratio of sample variances
- 6.3. Multinomial experiments
- 6.3.1. Multinomial distribution
- 6.3.2. Goodness-of-fit: Known model
- 6.3.3. Goodness-of-fit: Estimated model
- 6.4. Laboratory problems
- 6.4.1. Laboratory: Transition to statistics
- 6.4.2. Additional problem notebooks
- 7. Estimation Theory
- 7.1. Definitions
- 7.2. Properties of point estimators
- 7.2.1. Bias; unbiased estimator
- 7.2.2. Efficiency for unbiased estimators
- 7.2.3. Mean squared error
- 7.2.4. Consistency
- 7.3. Interval estimation
- 7.3.1. Example: Normal distribution
- 7.3.2. Approximate intervals for means
- 7.4. Method of moments estimation
- 7.4.1. Single parameter estimation
- 7.4.2. Multiple parameter estimation
- 7.5. Maximum likelihood estimation
- 7.5.1. Single parameter estimation
- 7.5.2. Cramer-Rao lower bound
- 7.5.3. Approximate sampling distribution
- 7.5.4. Multiple parameter estimation
- 7.6. Laboratory problems
- 7.6.1. Laboratory: Estimation theory
- 7.6.2. Additional problem notebooks
- 8. Hypothesis Testing Theory
- 8.1. Definitions
- 8.1.1. Neyman-Pearson framework
- 8.1.2. Equivalent tests
- 8.2. Properties of tests
- 8.2.1. Errors, size, significance level
- 8.2.2. Power, power function
- 8.3. Example: Normal distribution
- 8.3.1. Tests of [mu] = [mu subscript 0]
- 8.3.2. Tests of [sigma superscript 2] = [sigma superscript 2 subscript o]
- 8.4. Example: Bernoulli/binomial distribution
- 8.5. Example: Poisson distribution
- 8.6. Approximate tests of [mu] = [mu subscript o]
- 8.7. Likelihood ratio tests
- 8.7.1. Likelihood ratio statistic; Neyman-Pearson lemma
- 8.7.2. Generalized likelihood ratio tests
- 8.7.3. Approximate sampling distribution
- 8.8. Relationship with confidence intervals
- 8.9. Laboratory problems
- 8.9.1. Laboratory: Hypothesis testing
- 8.9.2. Additional problem notebooks
- 9. Order Statistics and Quantiles
- 9.1. Order statistics
- 9.1.1. Approximate mean and variance
- 9.2. Confidence intervals for quantiles
- 9.2.1. Approximate distribution of the sample median
- 9.2.2. Exact confidence interval procedure
- 9.3. Sample quantiles
- 9.3.1. Sample quartiles, sample IQR
- 9.3.2. Box plots
- 9.4. Laboratory problems
- 9.4.1. Laboratory: Order statistics and quantiles
- 9.4.2. Additional problem notebooks
- 10. Two Sample Analysis
- 10.1. Normal distributions: Difference in means
- 10.1.1. Known variances
- 10.1.2. Pooled t methods
- 10.1.3. Welch t methods
- 10.2. Normal distributions: Ratio of variances
- 10.3. Large sample: Difference in means
- 10.4. Rank sum test
- 10.4.1. Rank sum statistic
- 10.4.2. Tied observations; midranks
- 10.4.3. Mann-Whitney U statistic
- 10.4.4. Shift models
- 10.5. Sampling models
- 10.5.1. Population model
- 10.5.2. Randomization model
- 10.6. Laboratory problems
- 10.6.1. Laboratory: Two sample analysis
- 10.6.2. Additional problem notebooks
- 11. Permutation Analysis
- 11.1. Introduction
- 11.1.1. Permutation tests
- 11.1.2. Example: Difference in means test
- 11.1.3. Example: Smirnov two sample test
- 11.2. Paired sample analysis
- 11.2.1. Example: Signed rank test
- 11.2.2. Shift models
- 11.2.3. Example: Fisher symmetry test
- 11.3. Correlation analysis
- 11.3.1. Example: Correlation test
- 11.3.2. Example: Rank correlation test
- 11.4. Additional tests and extensions
- 11.4.1. Example: One sample trend test
- 11.4.2. Example: Two sample scale test
- 11.4.3. Stratified analyses
- 11.5. Laboratory problems
- 11.5.1. Laboratory: Permutation analysis
- 11.5.2. Additional problem notebooks
- 12. Bootstrap Analysis
- 12.1. Introduction
- 12.1.1. Approximate conditional estimation
- 12.2. Bootstrap estimation
- 12.2.1. Error distribution
- 12.2.2. Simple approximate confidence interval procedures
- 12.2.3. Improved intervals: Nonparametric case
- 12.3. Applications of bootstrap estimation
- 12.3.1. Single random sample
- 12.3.2. Independent random samples
- 12.4. Bootstrap hypothesis testing
- 12.5. Laboratory problems
- 12.5.1. Laboratory: Bootstrap analysis
- 12.5.2. Additional problem notebooks
- 13. Multiple Sample Analysis
- 13.1. One-way layout
- 13.1.1. Example: Analysis of variance
- 13.1.2. Example: Kruskal-Wallis test
- 13.1.3. Example: Permutation f test
- 13.2. Blocked design
- 13.2.1. Example: Analysis of variance
- 13.2.2. Example: Friedman test
- 13.3. Balanced two-way layout
- 13.3.1. Example: Analysis of variance
- 13.3.2. Example: Permutation f tests
- 13.4. Laboratory problems
- 13.4.1. Laboratory: Multiple sample analysis
- 13.4.2. Additional problem notebooks
- 14. Linear Least Squares Analysis
- 14.1. Simple linear model
- 14.1.1. Least squares estimation
- 14.1.2. Permutation confidence interval for slope
- 14.2. Simple linear regression
- 14.2.1. Confidence interval procedures
- 14.2.2. Predicted responses and residuals
- 14.2.3. Goodness-of-fit
- 14.3. Multiple linear regression
- 14.3.1. Least squares estimation
- 14.3.2. Analysis of variance
- 14.3.3. Confidence interval procedures
- 14.3.4. Regression diagnostics
- 14.4. Bootstrap methods
- 14.5. Laboratory problems
- 14.5.1. Laboratory: Linear least squares analysis
- 14.5.2. Additional problem notebooks
- 15. Contingency Table Analysis
- 15.1. Independence analysis
- 15.1.1. Example: Pearson's chi-square test
- 15.1.2. Example: Rank correlation test
- 15.2. Homogeneity analysis
- 15.2.1. Example: Pearson's chi-square test
- 15.2.2. Example: Kruskal-Wallis test
- 15.3. Permutation chi-square tests
- 15.4. Fourfold tables
- 15.4.1. Odds ratio analysis
- 15.4.2. Small sample analyses
- 15.5. Laboratory problems
- 15.5.1. Laboratory: Contingency table analysis
- 15.5.2. Additional problem notebooks
- Bibliography
- Index