Catalytic antibodies /

Saved in:
Bibliographic Details
Imprint:Weinheim : Wiley-VCH ; [Chichester : John Wiley], 2005.
Description:xxx, 586 p. : ill. (some col.) ; 24 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5551963
Hidden Bibliographic Details
Other authors / contributors:Keinan, Ehud.
ISBN:3527306889 (alk. paper)
Notes:Includes bibliographical references and index.
Table of Contents:
  • 1. Immunological Evolution of Catalysis
  • 1.1. Introduction
  • 1.2. Parallels between Antibody and Enzyme Evolution
  • 1.3. Evolution of Catalytic Antibodies
  • 1.4. Ferrochelatase Antibody 7G12 - Evolution of the Strain Mechanism
  • 1.5. Esterase Antibody 48G7 - Effect of Distant Mutations on Catalysis
  • 1.6. Sulfur Oxidase Antibody 28B4 - Incremental Changes in Evolution
  • 1.7. Oxy-Cope Antibody AZ28 - Evolution of Conformational Diversity in Catalysis
  • 1.8. Diels-Alderase Antibody 39A11 - Evolution of a Polyspecific Antibody combining Site
  • 1.9. Conclusions
  • References
  • 2 Critical Analysis of Antibody Catalysis.
  • 2.1. Introduction
  • 2.2. Exploiting Antibodies as Catalysts
  • 2.3. Catalytic Efficiency
  • 2.4. Hapten Design
  • 2.5. Representative Catalytic Antibodies
  • 2.6. Perspectives
  • 2.7. Conclusions
  • References
  • 3 Theoretical Studies of Antibody Catalysis.
  • 3.1. Introduction
  • 3.2. Questions Subject to Theoretical Elucidation
  • 3.3. Hydrolytic Antibodies
  • 3.4. Cationic Cyclizations
  • 3.5. Antibody-Catalyzed Diels-Alder and retro-Diels-Alder Reactions
  • 3.6. Other Antibody-Catalyzed Pericyclic Reactions
  • 3.7. Antibody-Catalyzed Carboxybenzisoxazole Decarboxylation
  • 3.8. Summary
  • References
  • 4. The Enterprise of Catalytic Antibodies: A Historical Perspective
  • 4.1. Introduction
  • 4.2. Methods
  • 4.3. Results
  • 4.4. Conclusions
  • References
  • 5. Catalytic Antibodies in Natural Products Synthesis
  • 5.1. Introduction
  • 5.2. Total Synthesis of a-Multistriatin via Antibody-Catalyzed Asymmetric Protonolysis of an Enol Ether
  • 5.3. Total Synthesis of Epothilones Using Aldolase Antibodies
  • 5.4. Total Synthesis of Brevicomins Using Aldolase Antibody 38C2
  • 5.5. Synthesis of 1-Deoxy-L-Xylose Using 38C2 Antibody
  • 5.6. Synthesis of (+)-Frontalin and Mevalonolactone via Resolution of Tertiary Aldols with 38C2
  • 5.7. Wieland-Miescher Ketone via 38C2-Catalyzed Robinson Annulation
  • 5.8. Formation of Steroid A and B Rings via Cationic Cyclization
  • 5.9. Synthesis of Naproxen via Antibody-Catalyzed Ester Hydrolysis
  • 5.10. Conclusions
  • References
  • 6 Structure and Function of Catalytic Antibodies.
  • 6.1. Introduction
  • 6.2. Electrostatic Complementarity
  • 6.3. Shape Complementarity and Approximation
  • 6.4. Shape Complementarity and Control of the Reaction Coordinate
  • 6.5. Shape Complementarity and Substrate Strain
  • 6.6. Reactive Amino Acids and the Possibility of Covalent Catalysis
  • 6.7. New Challenges
  • References
  • 7. Antibody Catalysis of Disfavored Chemical Reactions
  • 7.1. Introduction
  • 7.2. Formal Violation of Baldwin's Rules for Ring Closure: the 6-endo-tet Ring Closure
  • 7.3. Cationic Cyclization
  • 7.4. exo-Diels-Alder Reactions
  • 7.5. Miscellaneous Disfavored Processes
  • 7.6. Summary
  • References
  • 8. Screening Methods for Catalytic Antibodies
  • 8.1. Introduction
  • 8.2. Theoretical Consideration: What to look for during screening
  • 8.3. A Practical Perspective: Screening in the Published Literature
  • 8.4. High-Throughput Screening Methods
  • 8.5. Examples with Fluorogenic Substrates and Antibodies from Hybridoma
  • 8.6. Conclusion
  • References