Nuclear fusion research : understanding plasma-surface interactions /

Saved in:
Bibliographic Details
Imprint:Berlin ; [Great Britain] : Springer, 2005.
Description:xix, 461 p. : ill. ; 24 cm.
Language:English
Series:Springer series in chemical physics 0172-6218 ; v. 78
Subject:
Format: E-Resource Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5606389
Hidden Bibliographic Details
Other authors / contributors:Clark, R. E. H.
Reiter, D.
International Atomic Energy Agency.
ISBN:3540230386
Notes:Papers from a technical meeting of the International Atomic Energy Agency.
Includes bibliographical references and index.
Table of Contents:
  • Part I. Atomic and Surface Data Issues in Nuclear Fusion
  • 1. Plasma-Wall Interaction: Status and Data Needs
  • 1.1. Introduction
  • 1.2. Key Issues of Plasma-Wall Interaction
  • 1.3. The ITER-Concept to Control Plasma-Wall Interaction
  • 1.4. The Crucial Processes and Data Needs for Modeling
  • 1.4.1. The Problem of Tritium Retention in Fusion Devices
  • 1.4.2. Location and Strength of Impurity Sources
  • 1.4.3. Migration of Eroded Materials and Layer Formation by Deposited Impurities
  • 1.4.4. Modeling of Erosion and Deposition
  • 1.4.5. Release of Hydrogen Atoms and Molecules from Recycling Processes
  • 1.5. Summary and Conclusions
  • References
  • 2. Modeling of Fusion Edge Plasmas: Atomic and Molecular Data Issues
  • 2.1. Introduction
  • 2.1.1. Computational Edge Plasma Models
  • 2.2. The Fusion Edge Plasma Models
  • 2.2.1. Collisional Contributions to Braginskii Equations
  • 2.2.2. Standard Form of Source Terms
  • 2.2.3. The I-Integral Representation
  • 2.2.4. Application to Elastic Neutral Ion Collisions
  • 2.3. Applications
  • 2.3.1. Applications to TEXTOR
  • 2.3.2. Applications to ASDEX Upgrade
  • 2.4. Conclusions, Outlook
  • References
  • 3. Energy Deposition from ELMs in Fusion Devices
  • 3.1. Introduction
  • 3.1.1. Features of the Regime of Enhanced Energy Confinement (H-Mode)
  • 3.1.2. Characteristics of ELMs and Their Effects on the Pedestal Plasma
  • 3.2. Characteristics of Type I ELM Energy and Particle Losses from the Core Plasma
  • 3.2.1. Dynamics and Timescales for the Type I ELM Energy and Particle Losses from the Core Plasma
  • 3.2.2. Magnitude of the Type I ELM Energy and Particle Losses from the Core Plasma and Their Extrapolation to Next Step Burning Plasma Experiments
  • 3.3. Energy Fluxes to PFCs During Type I ELMs in Existing Experiments and Implications for Burning Plasma Experiments
  • 3.3.1. Spatial and Temporal Characteristics of the Type I ELM Energy Fluxes to PFCs
  • 3.3.2. Implications of the Type I ELM Energy Fluxesto PFCs in Burning Plasma Experiments: Application to the ITER Reference Q DT = 10 Scenario
  • 3.4. Summary and Conclusions
  • References
  • Part II. Plasma Diagnostics
  • 4. Molecular Diagnostics of Cold Edge Plasmas
  • 4.1. Molecules in Low Temperature Plasmas
  • 4.2. Molecular Emission Spectroscopy
  • 4.2.1. Interpretation of Molecular Spectra
  • 4.2.2. Molecular Hydrogen and Collisional-Radiative Modeling
  • 4.2.3. Flux Measurements
  • 4.3. Role of Molecular Hydrogen in Recombination (MAR)
  • 4.4. Vibrational Population of Hydrogen
  • 4.4.1. Measurements and Calculations
  • 4.4.2. Surface Effects
  • 4.5. Hydrocarbons and Chemical Erosion
  • 4.5.1. Dissociation, Radiation and Carbon Fluxes
  • 4.5.2. Gas Puff Experiments
  • 4.5.3. Erosion Yields in Laboratory Plasmas
  • 4.6. Conclusions
  • References
  • 5. Divertor Spectroscopy with Molecular Transport
  • 5.1. Introduction
  • 5.2. Hydrogen Molecules in Attached Divertor Plasmas
  • 5.3. Hydrocarbon Molecules in Attached Divertor Plasmas
  • 5.4. Molecules in Detached Divertor Plasmas
  • 5.5. Conclusions
  • References
  • 6. High-Temperature Plasma Edge Diagnostics
  • 6.1. Introduction
  • 6.2. Techniques and Methods
  • 6.2.1. Observation Geometries
  • 6.2.2. Evaluation Methods
  • 6.3. Results
  • 6.3.1. Relevant Elements
  • 6.3.2. Carbon
  • 6.3.3. Hydrocarbons
  • 6.3.4. Hydrogen/Deuterium
  • 6.3.5. Low-Z Impurities: Oxygen
  • 6.3.6. Medium-Z Impurities: Neon and Silicon
  • 6.3.7. High-Z Impurities: Molybdenum and Tungsten
  • 6.3.8. Atomic Helium Beams
  • 6.4. Conclusions and Recommendations
  • References
  • 7. X-ray Spectroscopy of High n Transitions of He- and Ne-Like Ions in Alcator C-Mod Plasmas
  • 7.1. Introduction
  • 7.2. Experiment Description
  • 7.3. Code Descriptions
  • 7.4. He-Like and Neighboring Ions
  • 7.5. Ne-Like and Neighboring Ions
  • 7.6. Conclusions
  • References
  • 8. High-Temperature Plasmas Diagnostics by X-ray Spectroscopy in the Low Density Limit
  • 8.1. Introduction
  • 8.2. X-ray Spectrometers
  • 8.3. Atomic Physics of He-Like Spectra
  • 8.3.1. Excitation
  • 8.3.2. Dielectronic Recombination
  • 8.3.3. Radiative Recombination
  • 8.3.4. Charge Exchange Recombination
  • 8.3.5. Inner-Shell Excitation
  • 8.3.6. Inner-Shell Ionization
  • 8.4. Determination of Plasma Parameters
  • 8.4.1. Electron and Ion Temperature, Toroidal Plasma Velocity
  • 8.4.2. Relative Abundance of Charged States
  • 8.5. Conclusions
  • References
  • Part III. Surface Processes and Material Issues
  • 9. Review and Status of Physical Sputtering and Chemical Erosion of Plasma Facing Materials
  • 9.1. Introduction
  • 9.2. Physical Sputtering
  • 9.2.1. Sputtering of Pure Elements
  • 9.2.2. Sputtering by Non-recycling Ions (Mixed Materials)
  • 9.2.3. Extrapolation to Fusion Reactor Conditions
  • 9.3. Chemical Erosion
  • 9.3.1. Present Understanding of Atomistic Processes
  • 9.3.2. Eroded Species and Sticking Coefficient
  • 9.3.3. Flux Dependence
  • 9.3.4. Fluence Dependence and Surface Topography
  • 9.3.5. Doping for Reduction of the Chemical Erosion Yield
  • 9.3.6. Open Questions and Data Needs
  • References
  • 10. Hydrogen Retention in and Release from Carbon Materials
  • 10.1. Introduction
  • 10.2. Hydrogen Retention in Pure and Doped Carbon Materials
  • 10.2.1. Implantation and Diffusion
  • 10.2.2. Co-deposition
  • 10.2.3. Effect of Neutron Damage
  • 10.3. Hydrogen Release from Graphite
  • 10.3.1. Re-emission
  • 10.3.2. Thermal Release During Thermal Desorption Spectroscopy (TDS)
  • 10.4. H-Isotope Removal from C-Based Co-deposits
  • 10.4.1. Tritium Removal Experience in TFTR and JET
  • 10.4.2. R&D of Co-deposit Removal Techniques
  • 10.5. Conclusion
  • References
  • 11. Interaction of Low-Energy Ions and Hydrocarbon Radicals with Carbon Surfaces
  • 11.1. Introduction
  • 11.2. Properties of Hydrocarbon Layers
  • 11.3. Experimental
  • 11.3.1. The Cavity Technique
  • 11.3.2. Particle-Beam Experiments
  • 11.4. Results
  • 11.4.1. Surface Loss Probabilities
  • 11.4.2. Sticking Coefficient of CH 3 Radicals
  • 11.4.3. Synergistic Interaction of CH 3 and Atomic Hydrogen
  • 11.4.4. Chemical Sputtering
  • 11.4.5. Ion-Induced Deposition
  • 11.5. Conclusions
  • References
  • 12. Tritium Inventory in the Materials of the ITER Plasma-Facing Components
  • 12.1. Introduction
  • 12.2. Historical Perspective
  • 12.3. Highlights of the ITER Design and Suitable Plasma-Facing Material Options
  • 12.3.1. ITER Design
  • 12.3.2. Plasma Facing Materials
  • 12.3.3. Tritium-Related Constraints on a BPX Operation Schedule
  • 12.3.4. Summary of Recent Experimental Findings
  • 12.4. ITER Tritium Retention Estimates and Uncertainties
  • 12.5. Further Research and Development (R&D) Needs
  • 12.6. Conclusions
  • References
  • 13. Mixed and High-Z Plasma-Facing Materials in TEXTOR
  • 13.1. Introduction
  • 13.2. Silicon-Carbon Material
  • 13.2.1. Siliconization
  • 13.2.2. Silicon-Doped CFC Material
  • 13.3. Twin Limiter Experiments
  • 13.4. B 4 C-Coated Copper Limiter
  • 13.5. Modeling of Erosion, Deposition and Impurity Transport with the ERO-TEXTOR Code
  • 13.6. Conclusions and Outlook
  • References
  • 14. Beryllium and Liquid Metals as Plasma Facing Materials
  • 14.1. Introduction
  • 14.2. Erosion
  • 14.2.1. Physical Sputtering of Beryllium
  • 14.2.2. Mixed-Material Erosion
  • 14.2.3. Physical Sputtering of Liquid Metal Surfaces
  • 14.2.4. Erosion of Surfaces at Elevated Temperature
  • 14.3. Hydrogen Isotope Retention
  • 14.3.1. Retention in Beryllium
  • 14.3.2. Retention in BeO and Mixed Be Materials
  • 14.3.3. Retention in Li and Ga
  • 14.4. Conclusion
  • References
  • Part IV. Databases
  • 15. IAEA Databases and Database Establishment Programs
  • 15.1. Introduction
  • 15.2. Overview
  • 15.3. Advisory Groups
  • 15.4. Co-ordinated Research Projects
  • 15.5. A+M Unit Products
  • 15.5.1. Electronic Databases
  • References
  • 16. NIFS DATABASE and Cooperation with IAEA DCN
  • 16.1. Introduction
  • 16.2. NIFS DATABASE
  • 16.3. IFS DPC Collaboration Program
  • 16.3.1. Domestic Collaboration
  • 16.3.2. International Collaboration
  • 16.4. Data Center Network (DCN)
  • 16.5. Recent Research Activities
  • 16.6. Conclusion
  • References
  • 17. The NIST Atomic Structure Databases
  • 17.1. Introduction
  • 17.2. Data Dissemination on the Internet
  • 17.3. The Scope of the NIST ASD Database
  • 17.4. Interactive Features
  • 17.5. Related NIST Databases
  • 17.6. Some Sample Searches
  • 17.7. Data Quality
  • 17.8. Outlook
  • References
  • 18. The Atomic Data and Analysis Structure
  • 18.1. Introduction
  • 18.2. General Principles of ADAS
  • 18.3. ADAS Code and Data Organization
  • 18.3.1. IDL-ADAS
  • 18.3.2. Data and Data Formats
  • 18.3.3. Offline ADAS
  • 18.4. Current Directions
  • 18.4.1. Errors and Uncertainties
  • 18.4.2. Non-Maxwellian Electron Distributions
  • 18.4.3. Spectral Visualization for Heavy Species
  • 18.5. ADAS Special Projects
  • 18.5.1. The DR Project
  • References
  • 19. Collision Processes of Atomic and Molecular Hydrogen in Fusion Plasmas: The Cross-Section Data Status
  • 19.1. Introduction
  • 19.2. Hydrogen Atom Collision Processes
  • 19.3. Collision Processes of Molecular Hydrogen and Its Ions
  • 19.3.1. Collision Processes of Hydrogen Molecules
  • 19.3.2. Decay Processes of Electronically Excited H 2 States
  • 19.3.3. Collision Processes of {{\rm H}}_2^+ Ions
  • 19.3.4. Processes Involving H − and {{\rm H}}_3^+ Ions
  • 19.4. Major Gaps in the H/H 2 Collision Database
  • 19.5. Concluding Remarks
  • References
  • 20. Partial and Differential Electron Impact Ionization Cross-Sections for Small Hydrocarbon Molecules
  • 20.1. Introduction
  • 20.2. Experimental
  • 20.3. Results
  • References
  • Index