Introduction to plasma physics : with space and laboratory applications /

Saved in:
Bibliographic Details
Author / Creator:Gurnett, Donald A.
Imprint:Cambridge, UK ; New York : Cambridge University Press, 2005.
Description:x, 452 p. : ill. ; 26 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/5640933
Hidden Bibliographic Details
Other authors / contributors:Bhattacharjee, A. (Amitava), 1955-
ISBN:0521364833
0521367601 (pbk.)
Notes:Includes bibliographical references and index.
Table of Contents:
  • Preface
  • 1. Introduction
  • 2. Characteristic parameters of a plasma
  • 2.1. Number density and temperature
  • 2.2. Debye length
  • 2.3. Plasma frequency
  • 2.4. Cyclotron frequency
  • 2.5. Collision frequency
  • 2.6. Number of electrons per Debye cube
  • 2.7. The de Broglie wavelength and quantum effects
  • 2.8. Representative plasma parameters
  • 3. Single particle motions
  • 3.1. Motion in a static uniform magnetic field
  • 3.2. Motion in perpendicular electric and magnetic fields
  • 3.3. Gradient and curvature drifts
  • 3.4. Motion in a magnetic mirror field
  • 3.5. Motion in a time varying magnetic field
  • 3.6. Adiabatic invariants
  • 3.7. The Hamiltonian method
  • 3.8. Chaotic orbits
  • 4. Waves in a cold plasma
  • 4.1. Fourier representation of waves
  • 4.2. General form of the dispersion relation
  • 4.3. Waves in a cold uniform unmagnetized plasma
  • 4.4. Waves in a cold uniform magnetized plasma
  • 4.5. Ray paths in inhomogeneous plasmas
  • 5. Kinetic theory and the moment equations
  • 5.1. The distribution function
  • 5.2. The Boltzmann and Vlasov equations
  • 5.3. Solutions based on constants of the motion
  • 5.4. The moment equations
  • 5.5. Electron and ion pressure waves
  • 5.6. Collisional drag force
  • 5.7. Ambipolar diffusion
  • 6. Magnetohydrodynamics
  • 6.1. The basic equations of MHD
  • 6.2. Magnetic pressure
  • 6.3. Magnetic field convection and diffusion
  • 6.4. The energy equation
  • 6.5. Magnetohydrodynamic waves
  • 6.6. Static MHD equilibrium
  • 6.7. MHD stability
  • 6.8. Magnetic reconnection
  • 7. Discontinuities and shock waves
  • 7.1. The MHD jump conditions
  • 7.2. Classification of discontinuities
  • 7.3. Shock waves
  • 8. Electrostatic waves in a hot unmagnetized plasma
  • 8.1. The Vlasov approach
  • 8.2. The Landau approach
  • 8.3. The plasma dispersion function
  • 8.4. The dispersion relation for a multi-component plasma
  • 8.5. Stability
  • 9. Waves in a hot magnetized plasma
  • 9.1. Linearization of the Vlasov equation
  • 9.2. Electrostatic waves
  • 9.3. Electromagnetic waves
  • 10. Non-linear effects
  • 10.1. Quasi-linear theory
  • 10.2. Stationary non-linear electrostatic potentials
  • 11. Collisional processes
  • 11.1. Binary Coulomb collisions
  • 11.2. Importance of small-angle collisions
  • 11.3. The Fokker-Planck equation
  • 11.4. Conductivity of a fully ionized plasma
  • 11.5. Collision operator for Maxwellian distributions of electrons and ions
  • Appendix A. Symbols
  • Appendix B. Vector differential operators
  • Appendix C. Vector calculus identities
  • Index